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a b s t r a c t

In this paper, two kinds of synchronization problems of complex dynamical networks with
multiple time-varying delays are investigated, that is, the cases with fixed topology and
with switching topology. For the former, different from the commonly used linear matrix
inequality (LMI) method, we adopt the approach basing on the scramblingness property of
the network’s weighted adjacency matrix. The obtained result implies that the network
will achieve exponential synchronization for appropriate communication delays if the net-
work’s weighted adjacency matrix is of scrambling property and the coupling strength is
large enough. Note that, our synchronization condition is very new, which would be easy
to check in comparison with those previously reported LMIs. Moreover, we extend the
result to the case when the interaction topology is switching. The maximal allowable upper
bounds of communication delays are obtained in each case. Numerical simulations are
given to demonstrate the effectiveness of the theoretical results.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The complex networks have received a major attention from various research communities. This is mainly due to their
wide applications in many areas ranging from physics to biological, social and computer sciences. Synchronization, as a com-
mon phenomenon of a population of dynamically interacting units, is one of the most demonstrating topics in complex net-
works [1,2]. In fact, synchronization is a ubiquitous phenomenon in nature, synchronization phenomena has been found in
different forms both in nature and in man-made systems, such as fireflies in the forest, applause, description of hearts, dis-
tributed computing systems, chaos-based communication network, and so on. Recently, many interesting results on syn-
chronization were derived for various complex networks associated with models being time-varying coupling [3–5],
switching phenomena [6–8], impulsive effects [9,10,17], and time delay [11–17].

In practical situations, time delays caused by signal transmission affect the behavior of coupled systems. Hence, various
techniques have been used to deal with the synchronization problems of complex networks with coupling delays. In some
cases, the linear matrix inequality (LMI) method is used to deal with such problems [11–17]. For example, in [11–14], the syn-
chronization problems of complex networks with constant coupling delay were investigated. The synchronization conditions
for both delay-independent and delay-dependent asymptotical stabilities in terms of LMIs were obtained. In [17], global syn-
chronization of a linearly hybrid coupled network with time-varying delays was considered. Several effective sufficient con-
ditions of global synchronization were attained based on the Lyapunov function and a LMI. Although very interesting from the
theoretical viewpoint, the LMI method would bring some slack variables and the presence of too many slack variables in-
creases computation burden and restricts applications of the synchronization conditions. Furthermore, the LMI method

1007-5704/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cnsns.2013.01.006

q Research was supported by the National Natural Science Foundations of China 11171216.
⇑ Corresponding author. Tel.: +86 13916563284.

E-mail address: jddy2008@126.com (Y. Dong).

Commun Nonlinear Sci Numer Simulat 18 (2013) 2581–2588

Contents lists available at SciVerse ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cnsns.2013.01.006&domain=pdf
http://dx.doi.org/10.1016/j.cnsns.2013.01.006
mailto:jddy2008@126.com
http://dx.doi.org/10.1016/j.cnsns.2013.01.006
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


can hardly be extended to the multiple time delay case. Therefore, in this paper, another effective method which may avoid
bringing slack variables will be used to discuss synchronization of complex dynamical networks with multiple time delays.

In the following, two kinds of synchronization problems of complex dynamical networks with multiple time-varying de-
lays are considered, that is, the cases with fixed topology and with switching topology. For the former, we show that the sta-
bility theorem of synchronization is easily derived just by using the approach based on the scramblingness property of the
network’s weighted adjacency matrix. The approach is based on the work of Hajnal back to the 1950s [18]. Hajnal investigated
the weak ergodicity of nonhomogeneous Markov chains and proposed scrambling matrix, which plays an important role in
the convergence of products of stochastic matrices. Therefore, this method is widely used to study discrete time consensus
problem in [19–21] and others. Similar method has also been used to study continuous time consensus problem in [22,23]
and synchronization problem in [24,25]. However, to the best of our knowledge, few people extend this approach to synchro-
nization problems of complex dynamical networks with time delay. Here, with the help of this approach, we will give a simple
condition to ensure the exponential synchronization of the network. To this purpose, we extend the concept of Hajnal’s scram-
bling property from stochastic matrices to nonnegative matrices with zero diagonal entries. The obtained result implies that
the network will achieve exponential synchronization for appropriate time-varying delays if the network’s weighted adja-
cency matrix is of scrambling property and the coupling strength is large enough. Moreover, the result is extended to net-
works with switching topologies. The maximal allowable upper bounds of communication delays are obtained in each case.

The paper is organized as follows. Section 2 contains the problem formulation, Section 3 is the main results. Some sim-
ulation results are presented in Section 4. The conclusion is given in Section 5.

2. Problem formulation

We denote a weighted digraph by G ¼ ðV;E;AÞ, where the set of nodes V ¼ fv1; . . . ;vNg and N P 2, the set of edges
E #V �V; A ¼ ½aij� is a weighted adjacency matrix with nonnegative adjacency elements aij. A directed edge of G is denoted
by eij ¼ ðv i;v jÞ 2 E, i.e., eij is a directed edge from v i to v j. The adjacency elements associated with the edges of the graph are
positive, i.e., eij 2 E if and only if aji > 0. Moreover, we assume aii ¼ 0 for all i 2 f1; . . . ;Ng. The set of neighbors of node v i is
denoted by N i ¼ fv j 2 V : ðv j;v iÞ 2 Eg. The Laplacian matrix LðGÞ ¼ ½lij� of digraph G is defined by lij ¼

PN
j¼1;j–iaij for i ¼ j and

lij ¼ �aij for j – i.
Consider delayed complex dynamical network consisting of N identical nodes, in which each node is an n-dimensional

dynamical subsystem. The entire network is described by

dxiðtÞ
dt
¼ BxiðtÞ þ f ðxiðtÞ; tÞ þ �

X
v j2N i

aijCðxjðt � sijðtÞÞ � xiðt � sijðtÞÞÞ; i ¼ 1;2; . . . ;N; ð1Þ

where xiðtÞ ¼ ½xi
1ðtÞ; xi

2ðtÞ; . . . ; xi
nðtÞ�

T 2 Rn is the state vector of the ith node, and B ¼ ½bij� 2 Rn�n is a constant matrix,
f : Rn � Rþ#Rn is a continuously function, � > 0 is the coupling strength, C ¼ diag½c1; c2; . . . ; cn� is the weighted inner cou-
pling matrix which is positive definite. The piecewise continuous functions sijðtÞ; i; j 2 f1; . . . ;Ng are time-varying commu-
nication delays and satisfy 0 6 sijðtÞ 6 s for some s > 0. Denote xiðhÞ ¼ uiðhÞ 2 Cð½�s;0�;RnÞ ði ¼ 1; . . . ;NÞ, where
Cð½�s;0�;RnÞ is the set of continuous functions from ½�s;0� to Rn. Our control goal is to let the network achieve synchroni-
zation, i.e., limt!1jxi

kðtÞ � xj
kðtÞj ¼ 0 for all i; j 2 f1; . . . ;Ng and k 2 f1; . . . ;ng.

The communication topology among the group of agents may change dynamically due to link failure or creation, for in-
stance, because of the limited detection range of agents, existence of the obstacles. In order to describe the switching topol-
ogies, we define a piecewise constant and right-continuous switching signal rðtÞ (r in short): ½0;1Þ# F 0, where F 0 � Z is a
finite index set. Therefore, the collection of all possible interaction topologies fGs ¼ ðV;Es;AsÞ : s 2 F 0g is a finite set.

Regarding the switching interconnection topologies, the corresponding network can be expressed as follows

dxiðtÞ
dt
¼ BxiðtÞ þ f ðxiðtÞ; tÞ þ �

Xm

p¼1

XN

j¼1

ap
r;ijCxjðt � spðtÞÞ; i ¼ 1;2; . . . ;N; ð2Þ

where spð�Þ 2 fsijð�Þ : i; j ¼ 1;2; . . . ;Ng for p ¼ 1; . . . ;m with m 6 NðN � 1Þ, and ap
r;ij is defined as follows

ap
r;ij ¼

0; j – i; spð�Þ – sijð�Þ;
ar;ij; j – i; spð�Þ ¼ sijð�Þ;
�
X
j–i

ap
r;ij; j ¼ i;

8>>><
>>>:

ð3Þ

where ar;ij is the ði; jÞth entry of matrix Ar. It is easy to see that
PN

j¼1ap
r;ij ¼ 0 for all i and p. Therefore, ApðGrÞ ¼ ½ap

r;ij� is a
matrix that has nonnegative off diagonal entries and zero row sum for each p. Further, we can observe that

Xm

p¼1

ap
r;ij ¼

ar;ij; j – i;

�
X
j–i

ar;ij; j ¼ i;

8<
: ð4Þ

i.e.,
Pm

p¼1A
pðGrÞ ¼ �LðGrÞ, where LðGrÞ is the corresponding Laplacian matrix associated with Gr.
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