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a b s t r a c t

This paper considers the L2 � L1 filtering problem for Markovian jump systems. The sys-
tems under consideration involve time-varying delays, disturbance signal and partly
unknown transition probabilities. The aim of this paper is to design a filter, which is suit-
able for exactly known and partly unknown transition probabilities, such that the filtering
error system is stochastically stable and a prescribed L2 � L1 disturbance attenuation level
is guaranteed. By using the Lyapunov–Krasovskii functional, sufficient conditions are for-
mulated in terms of linear matrix inequalities (LMIs). A numerical example is given to illus-
trate the effectiveness of the proposed main results. All these results are expected to be of
use in the study of filter design for Markovian jump systems with partly unknown transi-
tion probabilities.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Signal estimation, which is a fundamental problem in signal processing, has received significant attention in the past dec-
ades. Filter is one of the effective and convenient tools for signal analysis. It is well recognized that one of the most popular
ways to deal with the signal estimation is traditional Kalman filtering. This approach is based on the assumption that the
system is exactly known and its disturbances are stationary Gaussian noises with known statistics [1]. When the systems
noise disturbances are assumed to be arbitrary signals with bounded energy, the celebrated Kalman filtering scheme is
no longer applicable. To overcome such restriction, some alternative approaches were introduced. To the best of the authors’
knowledge, the published results can be categorized into three distinct approaches depending on the filtering performance
criteria. The first category deals with H1 filtering where the input signal is assumed to be energy-bounded and the main
objective is to minimize the energy of the estimation error for the worst possible bounded energy disturbance; see, e.g.
[2–8], and the references therein. The second category treats energy-to-peak filtering where the objective is to minimize
the peak-value of the estimation error for all possible bounded energy disturbances. For more results on this topic, we refer
readers to [8–13]. The third category treats peak-to-peak filtering where the objective is to minimize the induced L1 gain of
the estimation error for the unknown energy disturbances [14–16].

On the other hand, considerable attention has been devoted to Markovian jump systems (MJSs) due to their extensive
applications in mechanical systems, economics, systems with human operators, and other areas [17]. A MJS is a hybrid sys-
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tem with state vector that has two components x(t) and r(t). The first one is in general referred to as the state, and the second
one is regarded as the mode. In its operation, the jump system will switch from one mode to another in a random way, based
on a Markovian chain with finite state space. For the traditional MJSs with completely known transition probabilities, many
analysis and synthesis results have been reported, see, e.g. [18–20]. In fact, it is very hard and expensive to obtain precisely
all the transition probabilities even for a simple system. For this reason, much attention has been focused on more general
MJSs with partly unknown transition probabilities [21–26]. More recently, some results of filtering problem for MJSs have
been established in terms of the linear matrix inequality, e.g. [4,27–29]. However, the above-mentioned results are obtained
based on the assumption of complete knowledge on transition probabilities. Thus it is more practical and challenging to de-
sign a filter for the underlying systems with partly known transition probabilities, which has motivated this paper.

This article deals with the problems of L2 � L1 filtering for MJSs with time-varying delays and partly unknown transition
probabilities. By using the Lyapunov–Krasovskii functional, a new mode delay-dependent sufficient condition on stochastic
asymptotic stability with the L2 � L1 performance is derived in terms of linear matrix inequalities (LMIs). Base on this, the
existence condition of the desired filter which guarantees stochastic stability and an L2 � L1 performance of the correspond-
ing filtering error system is presented. A numerical example is provided to show the effectiveness of the proposed results.

Notation. Throughout this paper, kmax(Q) and kmin(Q) denote, respectively, the maximal and minimal eigenvalue of matrix Q.
ðX;F ;PÞ is a probability space, X is the sample space, F is the r � algebra of the sample space and P is the probability
measure on F . E{�} refers to the expectation operator with respect to some probability measure P. We use diag{�, �, �} as a
block-diagonal matrix. A > 0 (<0) means A is a symmetric positive (negative) definite matrix, A�1 denotes the inverse of
matrix A and AT the transpose, I is the unit matrix.

2. System description and definitions

Fix a probability space ðX;F ;PÞ and consider the following stochastic system:

_xðtÞ ¼ AðrðtÞÞxðtÞ þ AsðrðtÞÞxðt � sðrðtÞ; tÞÞ þ BðrðtÞÞmðtÞ
yðtÞ ¼ CðrðtÞÞxðtÞ þ CsðrðtÞÞxðt � sðrðtÞ; tÞÞ þ DðrðtÞÞmðtÞ
zðtÞ ¼ HðrðtÞÞxðtÞ
xðtÞ ¼ /ðtÞ; t 2 ½�s; 0�;
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where xðtÞ 2 Rn is the state vector; m(t) is the disturbance input which belongs to L2[01); yðtÞ 2 Rp is the measured output;
zðtÞ 2 Rq is the signal to be estimated; /(t) is a compatible vector-valued initial function defined on [�s,0]; A(r(t)), As(r(t)),
B(r(t)), C(r(t)), Cs(r(t)), D(r(t)) and H(r(t)) are real constant matrices with appropriate dimensions. {r(t), t P 0} is a continuous-
time Markovian process with right continuous trajectories and taking values in a finite set S ¼ f1;2; . . . ;Ng with transition
probability matrix P = {pij} given by

Prfrtþh ¼ jjrt ¼ ig ¼
pijMþ oðMÞ; i – j;
1þ piiMþ oðMÞ; i ¼ j;

�

where M > 0 and limh!0
oðMÞ
M
¼ 0; pij P 0 for i – j is the transition rate from mode i at time t to mode j at time t + h and

pii ¼ �
PN

j¼1;j – ipij. In this paper, the transition rates of the jumping process are considered to be partly accessible, i.e., some
elements in matrix P are unknown. For instance, for system (1) with 3 operation modes, the probabilities matrix may be as:

p11 ? ?

p21 p22 p23

p31 p32 p33

2
64

3
75;

p11 ? ?

? p22 ?

p31 p32 p33

2
64

3
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where ‘‘?’’ represents the inaccessible elements. For notational clarity, 8i 2 S the set Ui denotes Ui ¼ Ui
kn [ Ui

uk where
Ui

kn , fj : pij is known for i 2 Sg;Ui
uk , fj : pij is unknown for i 2 Sg. In addition, we denote Si

kn ,
P

j2Ui
kn
pij. For simplicity,

for each possible rt ¼ i; i 2 S, a matrix R(r(t)) will be denoted by Ri, for example, A(r(t)) is denoted by Ai, As(r(t)) is denoted
by Asi, and so on. si(t) denotes the mode-dependent time delays when the mode is in r(t) and satisfies

0 6 siðtÞ 6 si 6 s; _siðtÞ 6 li < 1: ð2Þ

In this paper, the following full-order linear filter is proposed to estimate the signal z(t):

_̂xðtÞ ¼ AFi
x̂ðtÞ þ BFi

yðtÞ; x̂ð0Þ ¼ 0 ð3Þ
ẑðtÞ ¼ CFi

x̂ðtÞ ð4Þ

where x̂ðtÞ is the filter state vector and ðAFi
BFi

CFi
Þ are appropriately dimensioned filter matrices to be determined.

Define the estimation error by eðtÞ ¼ zðtÞ � ẑðtÞ, we obtain the following filtering error system:
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