
Primary resonance of Duffing oscillator with fractional-order derivative

Yongjun Shen ⇑, Shaopu Yang, Haijun Xing, Guosheng Gao
Department of Mechanical Engineering, Shijiazhuang Tiedao University, No. 17 Bei Erhuan Dong Road, Shijiazhuang 050043, China

a r t i c l e i n f o

Article history:
Received 13 October 2011
Received in revised form 11 November 2011
Accepted 21 November 2011
Available online 30 November 2011

Keywords:
Fractional-order derivative
Duffing oscillator
Averaging method
Primary resonance
Amplitude–frequency curves

a b s t r a c t

In this paper the primary resonance of Duffing oscillator with fractional-order derivative is
researched by the averaging method. At first the approximately analytical solution and the
amplitude–frequency equation are obtained. Additionally, the effect of the fractional-order
derivative on the system dynamics is analyzed, and it is found that the fractional-order
derivative could affect not only the viscous damping, but also the linear stiffness, which
is characterized by the equivalent damping coefficient and the equivalent stiffness
coefficient. This conclusion is remarkably different from the existing research results about
nonlinear system with fractional-order derivative. Moreover, the comparisons of the
amplitude–frequency curves by the approximately analytical solution and the numerical
integration are fulfilled, and the results certify the correctness and satisfactory precision
of the approximately analytical solution. At last, the effects of the two parameters of the
fractional-order derivative, i.e. the fractional coefficient and the fractional order, on the
amplitude–frequency curves are investigated, which are different from the traditional
integer-order Duffing oscillator.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Fractional-order derivative and integral was presented in the late 1700s, and a lot of investigations, both on the general
theory and application of fractional-order derivative had been issued by many authors [1–28] since then. The theoretical re-
search was focused on the definition, properties, and computation method of the fractional-order derivative and integral. In
the application, two aspects were important, such as the description of the memory and hereditary properties in various
materials and processes, and artificial introduce of the fractional-order feedback in the control engineering. Moreover, the
effects of the fractional-order derivative on dynamical system were interesting and meaningful, and many issued works
were fulfilled on this subject.

Works on system dynamics with fractional-order derivative may be divided into several groups, one of which is the qual-
itatively analysis on the number and stability of solutions. For example, Machado and Galhano [10] analyzed statistical
dynamics of a large number of micromechanical masses, and found the existence of both integer and fractional properties
in the global dynamics. Li et al. [11] studied the stable parameters range of the simplified Mathieu-type equation with
fractional-order derivative. By using the idea of stability switch, Wang and Hu [12] and Wang and Du [13] investigated a
linear single degree-of-freedom (SDOF) oscillator with fractional-order derivative, and found some important phenomena.
Rossikhin and Shitikova [14] proposed a method to analyze the free damped vibrations of a fractional-order oscillator.
Tavazoei et al. [15], Pinto and Machado et al. [16] studied the fractional-order van der Pol oscillator and found multiple limit
cycles existing in the system.
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Due to the complexity of fractional-order derivative, numerically investigation on the complicated nonlinear dynamics
phenomena such as bifurcation, chaos and synchronization were another important group in the dynamical system with
fractional-order derivative. Atanackovic and Stankovic [17] proposed a modified numerical procedure to solve fractional-
order differential equations, and the test on several examples verified the efficiency of the method. Cao et al. [18] simulated
the fractional-order Duffing equation and investigated the effect of the fractional order on system dynamics using phase
diagram, bifurcation diagram and Poincaré map. Sheu et al. [19] solved the fractional damped Duffing equation by
transforming them into a set of fractional integral equations. Wu et al. [20], Chen and Chen [21] and Lu [22] studied the
synchronization in fractional-order nonlinear system.

Analytical research was also important in dynamical system, and there were some important works about analytical
investigation on dynamical system with the fractional-order derivative. Qi and Xu [23] analyzed the unsteady flow of
viscoelastic fluid with the fractional-order derivative Maxwell model. Wahi and Chatterjee [24] studied an oscillator with
fractional-order derivative and time-delay. Chen and Zhu [25], Padovan and Sawicki [26], Borowiec et al. [27], Huang and
Jin [28] also investigated different fractional-order system and presented important results by analytical research. However,
the analytical researches were focused on some special fractional orders, or the fractional-order derivative was simply
considered as the special damping force, which may be insufficient in some cases.

In this paper, the Duffing oscillator with fractional-order derivative is researched analytically. In Section 2 the primary
resonance of the Duffing oscillator with fractional-order derivative is investigated, where two important formulae are given
and the approximately analytical solution is obtained. Additionally, the effects of the fractional-order derivative on the
damping and stiffness are formulated as the equivalent damping coefficient and the equivalent stiffness coefficient, which
is remarkably different from the results in most other works. Section 3 presents the steady-state solution, the amplitude–
frequency equation, and the stability condition of the steady-state solution. At last, the comparison of the approximately
analytical solution with the numerical result is fulfilled in Section 4, and the effects of the parameters for the fractional-order
derivative on the amplitude–frequency equation are also given in this section.

2. The approximately analytical solution of Duffing oscillator with fractional-order derivative

The considered Duffing oscillator with fractional-order derivative is

m€xðtÞ þ kxðtÞ þ c _xðtÞ þ a1x3ðtÞ þ K1Dp½xðtÞ� ¼ F cosðxtÞ; ð1Þ

where m, k, c, a1, F, x are the system mass, linear stiffness coefficient, linear viscous damping coefficient, nonlinear stiffness
coefficient, excitation amplitude and excitation frequency respectively, and Dp[x(t)] is the p-order derivative of x(t) to t with
the fractional coefficient K1(K1 > 0) and the fractional order p(0 6 p 6 1). There are several definitions for fractional-order
derivative, and they are equivalent under some conditions for a wide class of functions. Here we adopt Caputo’s definition

Dp½xðtÞ� ¼ 1
Cð1� pÞ

Z t

0

x0ðuÞ
ðt � uÞp

du; ð2Þ

where C(z) is Gamma function satisfying C(z + 1) = zC(z).
Using the following transformation of coordinates

x0 ¼
ffiffiffiffiffi
k
m

r
; 2el ¼ c

m
; ea ¼ a1

m
; ek1 ¼

K1

m
; ef ¼ F

m
;

Eq. (1) becomes

€xðtÞ þx2
0xðtÞ þ 2el _xðtÞ þ eax3ðtÞ þ ek1Dp½xðtÞ� ¼ ef cosðxtÞ; ð3Þ

where x0 is natural frequency. In this transformation, e, l, a, k1 and f are not dimensionless quantity, and the transformation
is only to satisfy the requirement of averaging method formally. The primary resonance means the excitation frequency is
close to the natural one, i.e. x �x0. In order to illustrate the approximate degree, one should introduce

x2 ¼ x2
0 þ er; ð4Þ

where r is the detuning factor. Eq. (3) could be transformed into

€xðtÞ þx2xðtÞ ¼ eff cosðxtÞ þ rxðtÞ � 2l _xðtÞ � ax3ðtÞ � k1Dp½xðtÞ�g: ð5Þ

Supposing Eq. (5) has the solution as

x ¼ a cos u ð6aÞ

and

_x ¼ �ax sin u; ð6bÞ

where the amplitude a and the generalized phase u (u = xt + h) are slow varying functions of t. By differentiating Eq. (6a) to
t, one could obtain
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