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ARTICLE INFO ABSTRACT

Article history: Invariant tori are prominent features of symplectic and volume-preserving maps. From the

Available online 21 April 2011 point of view of chaotic transport the most relevant tori are those that are barriers, and
thus have codimension one. For an n-dimensional volume-preserving map, such tori are

Keywords: prevalent when the map is nearly “integrable,” in the sense of having one action and

Volume-preserving n — 1 angle variables. As the map is perturbed, numerical studies show that the originally
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connected image of the frequency map acquires gaps due to resonances and domains of
nonconvergence due to chaos. We present examples of a three-dimensional, generalized
standard map for which there is a critical perturbation size, ¢, above which there are no
tori. Numerical investigations to find the “last invariant torus” reveal some similarities
to the behavior found by Greene near a critical invariant circle for area preserving maps:
the crossing time through the newly destroyed torus appears to have a power law singu-
larity at &, and the local phase space near the critical torus contains many high-order
resonances.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Volume-preserving maps are appropriate models for many systems including fluid flows [1-7], granular mixers [8],
magnetic field line flows [9-11], and even the motion of comets perturbed by a planet on an elliptical orbit [12]. Volume-
preserving dynamics has some similarities to symplectic dynamics; however, though every symplectic map is volume
preserving, the converse is only true in two-dimensions.

This paper is concerned with the effects of perturbation and resonance on invariant tori; such tori are especially common
in the integrable case. In the context of Hamiltonian systems and symplectic maps, integrability is synonymous with Liou-
ville’s definition: a d-degree of freedom system is integrable when it has a set of d, almost-everywhere independent, invol-
utory invariants. The involution property of the invariants implies that they also generate an Abelian group of symmetries
that preserve the invariants, and therefore that the (compact) integral manifolds are tori. An integrable 2d-dimensional sym-
plectic map can be written (at least locally) in terms of angle-action variables (0,]) € T x R? as

0 =0+9Q(),
I=]

where we will take T¢ = R?/2z% [13]. The concept of integrability is perhaps less well-formulated for the volume-preserving
case. However, it seems quite natural to use Bogoyavlenskij's concept of broad integrability [14,15]. Roughly speaking, a sys-
tem of n ODEs is broadly integrable if it has k independent invariants and d commuting symmetries that preserve the invari-
ants, where k + d = n. We propose a similar definition for a map—the integrable case corresponds to the form (1) as well, but
now (0,]) € T¢ x R* [16].

(1)
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It is natural to study (1) on the universal cover, letting (x,z) € R x R¥, so that (0,]) = (x mod1,z). We study a simple class of
perturbations of (1), which for the lift becomes

X =x+Q(2),
z/ =Z- gg(x),
where the “force,” g, is periodic, i.e., g(x + m) = g(x) for any m e 7% Since Q is evaluated at z in (2), this map is a volume-
preserving diffeomorphism for any smooth functions € and g.! It is exact volume preserving when g has zero average—or
equivalently the zero Fourier component of g vanishes [17]. Since this is the only case for which (2) can have rotational

tori—that is, tori homotopic to the tori of (1)—that are invariant, we will make this assumption. The unperturbed rotation
vector (or frequency) map:

(2)

Q:RF— R (3)

plays an especially important role in the dynamics of (1). For the integrable map, the forward orbit {(x¢,z) : t € N} of each
initial condition (xg,zo) has a rotation vector
T Xt — Xo
(X, 20) = %E{lo T (4)

given by the unperturbed map Q(zy). If €2(z,) is incommensurate, see Section 2, the orbit densely covers a d-dimensional
torus; by contrast, when the rotation vector is resonant an orbit densely covers one or more lower dimensional tori.

When the map (1) is perturbed, many of its d-tori are immediately destroyed; however, KAM theory implies that there
will still be a large set of invariant tori if the perturbation is small enough and smooth enough and the frequency satisfies a
nondegeneracy condition. This is rigorously true for k = d when the perturbed map is exact symplectic and satisfies a Holder
condition (i.e. is C2* " for some h > 0), and @ satisfies a nondegeneracy condition such as the twist condition

detDQ > ¢ > 0, (5)

see, e.g., [18,19].
Of course, when k < d, the number of actions is smaller than the number of angles and the matrix D2 is no longer square.
The “nicest” case corresponds to rank (DQ) = k implying that the image of Q is an immersed k-dimensional submanifold.
Maps of the form (1) with k = 1, so-called one-action maps [20], have codimension-one invariant tori. KAM theory implies
that codimension-one tori are robust features of nearly-integrable, analytic one-action maps [21,22]. These theorems assume
that Q € C**! and satisfies a nondegeneracy condition of the form

det(DQ,D*Q,...D'Q) = ¢ >0, (6)

similar to that used by Riissmann [23,24].

By contrast, when 1 < k < d the invariant d—k dimensional tori of (1) need not be as robust. For example when there are
two actions and one angle, almost all of the one-dimensional tori can apparently be immediately destroyed even under a
smooth arbitrarily small perturbation [25].

Though codimension-one tori are commonly observed in near-integrable, one-action maps, they are often destroyed by
resonant bifurcations as the perturbation grows. The nature of these bifurcations is strongly influenced by the form of the
frequency map. Even when the map satisfies (6) perturbations of (1) can have many of the features of symplectic maps that
do not satisfy the twist condition [26], see Section 3. In Section 4, we will investigate which of these persistent tori is most
robust.

2. Frequency maps and resonance

A rotation vector » € R? is “resonant” when there exists an (m,n) € z¢ x 7\ {0,0} such that
m-w=n. (7)
The resonance module of a given w is a sub-lattice of Z¢ defined by
Lw)y={mez m we7}. (8)

The dimension of this module (the number of independent m-vectors in £) is the rank of the resonance. An incommensurate
or nonresonant rotation vector corresponds to the rank-zero case, £ = {0}. The order of a resonance is the length of the
smallest nonzero vector in £, though of course this depends upon the norm used; we will typically use the sup-norm.
The set of resonant frequencies

R={weR":m- w=n for some (m,n) € 2 x 7\ {0,0}}

is the resonance web; it is a dense subset of R.

1 When d =k, (2) is symplectic with the form dx A dz only if D and Dg are symmetric matrices.
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