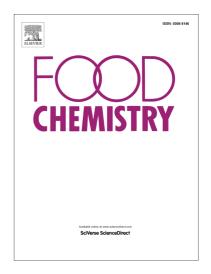
Accepted Manuscript

Composition and antioxidant, antibacterial, and anti-HepG2 cell activities of polyphenols from seed coat of *Amygdalus pcdunculata* Pall

Cairui Lu, Cong Li, Bang Chen, Yehua Shen


PII: S0308-8146(18)30904-X

DOI: https://doi.org/10.1016/j.foodchem.2018.05.091

Reference: FOCH 22924

To appear in: Food Chemistry

Received Date: 4 February 2018 Revised Date: 20 May 2018 Accepted Date: 21 May 2018

Please cite this article as: Lu, C., Li, C., Chen, B., Shen, Y., Composition and antioxidant, antibacterial, and anti-HepG2 cell activities of polyphenols from seed coat of *Amygdalus pcdunculata* Pall, *Food Chemistry* (2018), doi: https://doi.org/10.1016/j.foodchem.2018.05.091

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Composition and antioxidant, antibacterial, and anti-HepG2 cell activities of polyphenols from seed coat of *Amygdalus pcdunculata* Pall

Cairui Lu, Cong Li*, Bang Chen, Yehua Shen*

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China

Abstract: This study aims at identifying the composition of polyphenols present in *Amygdalus* pcdunculata Pall seed coat (APSC), and characterizing their antioxidant, antibacterial, and anticancer activities. The polyphenols from APSC were composed of 32 compounds. The compounds with important biological activities included apigenin 7-O-glucoside (the main component; 34.53 mg/100 g), quercitrin (23.43 mg/100 g), kaempferol (10.28 mg/100 g), naringenin (6.27 mg/100 g), cyanidin 3-rutinoside (5.76 mg/100 g), cyanidin 3-O-galactoside (5.19 mg/100 g), and quercetin (2.50 mg/100 g), as well as a variety of phenolic acids (gentisic acid, 23.13 mg/100 g; salicylic acid, 18.79 mg/100 g; gallic acid, 2.55 mg/100 g; etc.). Characterization of the identified polyphenols indicated that APSC possessed high antioxidant activity, due to its ability to reduce Fe³⁺ and scavenge ABTS, DPPH, OH., O₂-, and H₂O₂ free radicals. The ability of APSC to reduce Fe3+ and scavenge ABTS radical, and H2O2 was stronger than that of control group ascorbic acid (Vc). The data from bacteriostatic test showed that polyphenols from APSC had good antibacterial activity against Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Bacillus subtilis, but showed no activity against Aspergillus niger. Cell viability assays using HepG2 cell illustrated that polyphenols from APSC significantly inhibited cell proliferation and induced cell apoptosis. The findings demonstrate that polyphenols from APSC may be utilized as is or further

1

^{*} Corresponding author at: Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China. E-mail address: licong@nwu.edu.cn (C. Li), yhshen@nwu.edu.cn (Y. Shen).

Download English Version:

https://daneshyari.com/en/article/7584730

Download Persian Version:

https://daneshyari.com/article/7584730

<u>Daneshyari.com</u>