Accepted Manuscript

Core-shell Fe₃O₄ polydopamine nanoparticles as sorbent for magnetic dispersive solid-phase extraction of copper from food samples

Emre Yavuz, Şerife Tokalıoğlu, Şaban Patat

PII:	S0308-8146(18)30782-9
DOI:	https://doi.org/10.1016/j.foodchem.2018.04.134
Reference:	FOCH 22829
To appear in:	Food Chemistry
Received Date:	30 November 2017
Revised Date:	17 April 2018
Accepted Date:	28 April 2018

Please cite this article as: Yavuz, E., Tokalıoğlu, S., Patat, S., Core–shell Fe₃O₄ polydopamine nanoparticles as sorbent for magnetic dispersive solid-phase extraction of copper from food samples, *Food Chemistry* (2018), doi: https://doi.org/10.1016/j.foodchem.2018.04.134

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Core–shell Fe₃O₄ polydopamine nanoparticles as sorbent for magnetic dispersive solid-phase extraction of copper from food samples

Emre Yavuz, Şerife Tokalıoğlu*, Şaban Patat

Erciyes University, Faculty of Science, Chemistry Department, TR-38039 Kayseri, Turkey

Abstract

In the present study, core-shell Fe_3O_4 polydopamine nanoparticles were synthesized and used for the first time as an adsorbent for the vortex assisted magnetic dispersive solid phase extraction of copper from food samples. After elution, copper in the solutions was determined by FAAS. The adsorbent was characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area, and zeta potential measurements. Various parameters affecting the magnetic dispersive solid-phase extraction were evaluated. The optimum pH and magnetic adsorbent amount were found to be 5 and 40 mg, respectively. Elution was made by 3 mL of 2 mol L⁻¹ HNO₃. The major advantage of the method is the fast equilibration during adsorption without the need for vortexing or shaking. The preconcentration factor and detection limit of the method were found to be 150 and 0.22 mg L^{-1} , respectively. The precision (as RSD%) and adsorption capacity of the method were 3.7% and 28 mg g^{-1} , respectively. The method was successfully verified by analyzing four certified reference materials (SPSWW1 Batch 114, TMDA 53.3 Lake water, BCR-482 Lichen and 1573a Tomato Leaves) and by addition/recovery tests of copper standard solution in organic baby food, muesli, macaroni, honey, and milk samples.

Keywords: Magnetic dispersive solid-phase extraction; Copper; Fe₃O₄@PDA; Core-shell; Food samples; FAAS

^{*} Corresponding author.

E-mail address: serifet@erciyes.edu.tr (§. Tokalıoğlu).

Download English Version:

https://daneshyari.com/en/article/7584809

Download Persian Version:

https://daneshyari.com/article/7584809

Daneshyari.com