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A B S T R A C T

A method for the non-targeted detection of paprika adulteration was developed using Fourier transform mid-
infrared (FT-MIR) spectroscopy and one-class soft independent modelling of class analogy (OCSIMCA). One-class
models based on commercially available paprika powders were developed and optimised to provide>80%
sensitivity by external validation. The performances of the established models for adulteration detection were
tested by predicting spiked paprika samples with various types of fraudulent material and levels of adulterations
including 1% (w/w) Sudan I, 1% (w/w) Sudan IV, 3% (w/w) lead chromate, 3% (w/w) lead oxide, 5% (w/w)
silicon dioxide, 10% (w/w) polyvinyl chloride, and 10% (w/w) gum arabic. Further, the influence of data
preprocessing on the model performance was investigated. Relationship between classification results and data
preprocessing was identified and specificity> 80% was achieved for all adulterants by applying different pre-
processing methods including standard normal variate (SNV), first and second derivatives, smoothing, and
combinations thereof.

1. Introduction

Since ancient times spices have been used to flavour foods and
improve the taste of dishes. Just as long dishonest practices have been
going on in the food chain and the motivation for spice fraud is still the
same since trading began – that is financial gain (Spink & Moyer, 2011).
Because they are high value commodities and consumption is in-
creasing worldwide, spice adulteration promise high economic profit.
Taking this motivation together with the length and complexity of the
supply chains make spices an attractive product category for fraudsters.
The substitution of ingredients, addition of (illegal) substances, and
false claims of origin are important and challenging issues food au-
thorities and industry are confronted with (Esslinger, Riedl, & Fauhl-
Hassek, 2014). Colour is one of the main quality attributes of spices
(van Asselt, Banach, & van der Fels-Klerx, 2018) and therefore, a
common adulteration was found to be the addition of illegal dyes to
artificially enhance and maintain the natural colour or to cover up
blending with lower value product material (Silvis, van Ruth, van der
Fels-Klerx, & Luning, 2017). In addition, the price of spices is often
determined by their weight or volume, and therefore another common
spice adulteration is the addition of less expensive bulking agents
(Petrakis & Polissiou, 2017).

Paprika powder is one of the most frequently consumed spices in the
European Union (van Asselt et al., 2018). It is obtained by grinding
varieties of dried fruits belonging to the genus Capsicum. Numerous
varieties of paprika having different colours, shapes, flavour, degree of
hotness etc., are cultivated (Seliem, Mahmoud, Amin, & Salama, 2015).
In the food industry paprika powder is used both as a natural colourant
to adjust or intensify the colour of foodstuffs and impart flavour. Cap-
santhin, capsorubin, and other carotenoids are the pigments responsible
for the characteristic colours whereas capsaicinoids are the pungency
giving compounds which are produced in paprika at various levels
depending on the variety (Palacios-Morillo, Jurado, Alcázar, & Pablos,
2016). Although spices like paprika powder are used and consumed
only at low amounts, they are present in almost every processed food,
and therefore authenticity testing of spices in general and paprika
powder in particular has become an important topic in terms of con-
sumer (health) protection.

Over time paprika powder was found to be fraudulently manipu-
lated by addition of different materials that are for example not per-
mitted as food additives in the European Union such as lead oxide
(Döka, Bicanic, & Szöllösy, 1998) and synthetic dyes (van Asselt et al.,
2018). Microscopic examination of paprika powder is the classical way
for the detection of foreign material. While a powerful method it
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requires tremendous training and continuous practices. Many analytical
methods have been suggested in recent years for the determination of
azo dyes, especially carcinogenic Sudan dyes (Lohumi et al., 2017). The
most common methods are based on high-performance liquid chro-
matography (HPLC) with ultraviolet–visible (UV–vis) absorbance or
mass spectrometry (MS) detectors (Reinholds, Bartkevics, Silvis, van
Ruth, & Esslinger, 2015). Although these methods are very sensitive
with regard to the analysis of a specific compound or class of com-
pounds, they are time-consuming and expensive. Hence, a lot of effort
has been put into the development of rapid screening methods based on
spectroscopic techniques for the detection of adulteration. Nuclear
magnetic resonance (NMR) (Di Anibal, Ruisánchez, & Callao, 2011),
fluorescence (Di Anibal, Rodríguez, & Albertengo, 2015), and UV–vis
spectroscopy (Di Anibal, Rodriguez, & Albertengo, 2014), combined
with multivariate classification techniques have recently been shown to
be capable of detecting Sudan dyes in paprika in the sub-parts per
million levels. Vibrational spectroscopic techniques including Fourier
transform mid-infrared (FT-MIR) (Lohumi et al., 2017), near infrared
(NIR), and Raman spectroscopy (Haughey, Galvin-King, Ho, Bell, &
Elliott, 2015) have also been successfully applied to determine spice
adulteration with Sudan dyes, although these methods are less sensi-
tive.

In particular FT-MIR spectroscopy has become widely used as ana-
lytical screening tool for the authentication of feed and food due to its
benefits such as the analysis of samples with minimal or even without
any preparation, simple instrumentation, and rapid data collection. Its
potential for adulteration detection of food is confirmed by the high
number of studies in literature, e.g., on fruit juices, edible oils, honey,
herbs, and numerous other food products (Black, Haughey, Chevallier,
Galvin-King, & Elliott, 2016; Lohumi, Lee, Lee, & Cho, 2015; Rodriguez-
Saona & Allendorf, 2011). In most studies, multivariate regression or
discriminant models were applied to FT-MIR spectral data which al-
lowed for the detection of selected adulterants. However, this targeted
strategy would fail in screening samples where other types or yet un-
known adulterants are present. Indeed, this is the big challenge in the
detection of adulteration using targeted analytical approaches that only
substances that are being investigated are usually found, whereas un-
known or unforeseen adulterants might be overlooked. Therefore, non-
targeted approaches have increasingly become a focus of research.

Combining spectroscopic methods with chemometric one-class
modelling techniques creates a powerful tool to enable detections for a
range of both known and unknown adulterants. One-class classifiers are
commonly applied when the data from other classes is hard to collect
(Oliveri, 2017), for example in food authentication it is nearly im-
possible to make an exhaustive analysis and take all potential adulter-
ants into account. Although considered to be very suitable, in food
sciences there are only few examples using the one-class classification
approach for non-targeted adulteration detection including the detec-
tion of several adulterants in rice flour (Xu, Yan, Cai, & Yu, 2013),
kudzu starch (Xu, Shi, Cai, Zhong, & Tu, 2015), and skim milk powder
(Capuano, Boerrigter-Eenling, Koot, & van Ruth, 2015) by NIR spec-
troscopy, as well as in raw milk (Gondim, Junqueira, de Souza,
Ruisanchez, & Callao, 2017), and sesame oil (Xu et al., 2012) by FT-MIR
spectroscopy. Here, one-class modelling techniques were used to ob-
jectively classify samples into “normal” (authentic) and “abnormal”
(adulterated) samples. For designing such one-class model a re-
presentative set of samples is required covering the most important
sources of variation within the class of interest (Xu, Shi et al., 2015).
For non-targeted adulteration detection, the class of interest is the
“normal” class consisting of authentic samples. They serve as the basis
for determining the data space of the authentic product and detecting
whether a new sample is similar to the defined “normal” (authentic)
class (Kjeldahl & Bro, 2010). This is the main difference to multi-class
classification where also the “abnormal” classes are required to classify
new samples.

The usefulness of a developed one-class model should be sufficiently

validated with new samples, both authentic and adulterated samples.
The classification performance depends on many aspects such as size
and representativeness of the baseline sample set as well as the number
and quality of the (preprocessed) spectral data. Proper preprocessing is
required to remove unwanted variations and highlight differences
caused by adulteration (Xu, Shi et al., 2015; Xu et al., 2013) and
therefore testing several preprocessing methods is an essential part of
the chemometric workflow. Nevertheless, preprocessing optimised in a
study for a certain type of adulterant carries the risk that other adul-
terants will be overlooked.

The aim of the current study was to develop and validate a simple
screening method for the non-targeted detection of adulteration of
paprika powder. For this, FT-MIR spectroscopy coupled with one-class
soft independent modelling of class analogy (OCSIMCA) was tested.
Combining a spectroscopic technique with multivariate one-class clas-
sification method seemed to be the most promising strategy to de-
termine any deviations from typical paprika powder characteristics and
therefore to detect various adulterants within one approach. Moreover,
as integral part of chemometrics different data preprocessing methods
were applied in order to examine a potential influence on the model
performance results.

2. Material and methods

2.1. Sample collection and preparation

A total of 113 samples of paprika powder were investigated in this
study. Fifty of these samples (all from different batches) were provided
with metadata about provenance, harvest year, extractable colour, and
pungency by one company in course of the EU project SPICED (Székács,
Wilkinson, Mader, & Appel, 2018). Further 63 commercially available
samples of 32 different brands (1–6 batches per brand) were purchased
from various retailers in Germany including supermarkets and market
places. Thus, the paprika powder sample set covers the major relevant
sources of natural variation such as quality (e.g., colour and pungency),
provenance, harvest year, production, and storage condition/packa-
ging. All samples were stored at room temperature in the dark under
clean and dry conditions.

A principal component analysis (PCA) of the FT-MIR data of the 113
paprika powders was performed to identify a representative subset for
artificial adulteration. From the PCA scores plot of the first two prin-
cipal components (PCs) ten paprika powder samples (9 brands) were
selected that cover the main variation of the paprika data set. These
samples were spiked with 7 potential colouring or bulking adulterants,
namely gum arabic, lead chromate, lead (II, IV) oxide, polyvinyl
chloride (PVC), silicon dioxide, Sudan I, and Sudan IV, respectively.
The selection of adulterants is based on notifications in the European
Rapid Alert System for Food and Feed (RASFF) and reports in the Food
Fraud Database of the U.S. Pharmacopeial Convention (USP) and de-
rived from expert opinions. The aim was to cover various types of well-
known and potential adulterant materials including organic as well as
inorganic substances. The selected adulterants have not necessarily
been reported or observed in paprika powder in the past.
Concentrations were chosen according to the adulteration purpose,
with lower levels for dyes that still have an effect on the colour of
paprika powder and higher, economically relevant adulteration levels
for bulking agents. Adulterants were added at levels of 1.0 (Sudan I,
Sudan IV), 3.0 (lead chromate, lead oxide), 5.0 (silicon dioxide), and
10.0 (gum arabic, PVC) g/100 g (w/w) under gravimetric control
(Sartorius ME254S analytical balance). The entire number of artificially
adulterated samples was 70.

Prior to FT-MIR analysis the samples, both non-adulterated and
artificially adulterated paprika samples, were ground to a homogeneous
powder. For this, approximately 0.8 g solid material were weighed into
grinding jars (Retsch 10mL zirconium oxide jar and 2 zirconium oxide
grinding balls with 12mm diameter) and milled at 30 Hz for 2min
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