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a b s t r a c t

The reproducing kernel theorem is used to solve the time-fractional telegraph equation
with Robin boundary value conditions. The time-fractional derivative is considered in
the Caputo sense. We discuss and derive the exact solution in the form of series with easily
computable terms in the reproducing kernel space.
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1. Introduction

In recent years, there are many researchers to develop numerical methods [1–6,16,17] for fractional partial differential
equations due to the important application for fractional partial differential equation in fields of science and engineering
[7–11].

The telegraph equation of hyperbolic equations is proved to be better model the suspension flows [12,13]. The time-
fractional telegraph equations have recently been considered by many authors. Orsingher and Beghin [14] studied the
fundamental solutions to time-fractional telegraph equations of order 2a. They obtained the Fourier transforms of the
solutions for any a and gave a representation of their inverses in terms of stable densities. For the special case a = 1/2, they
also showed that the fundamental solution is the probability density of a telegraph process with Brownian time. Beghin and
Orsingher [15] considered the fractional telegraph equation with partial fractional derivatives of rational order a = m/n with
m < n. They proved that the fundamental solution to the Cauchy problem for the time-fractional telegraph equation can be
expressed as the density of the composition of two processes, one depending on m and the other depending on n. Recently,
Liu and coworkers [16] discuss and derive the analytical solution of the time-fractional telegraph equation with three kinds
of nonhomogeneous boundary conditions by the method of separating variables, Momani [17] derived the analytic and
approximate solutions of the space- and time-fractional telegraph equation with some special initial and boundary
conditions using Adomian decomposition.

In this paper, we consider the representation of exact solution for time-fractional telegraph equation:

D2a
t uðx; tÞ þ aDa

t uðx; tÞ ¼ k
@2uðx; tÞ
@x2 þ f ðx; tÞ;

0 < t 6 T; 0 < x < L;
1
2
< a 6 1;

ð1Þ
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subject to initial conditions

uðx;0Þ ¼ /1ðxÞ; utðx; 0Þ ¼ /2ðxÞ; 0 6 x 6 L; ð2Þ

and boundary conditions

uð0; tÞ þ k1uxð0; tÞ ¼ l1ðtÞ; 0 6 t 6 T;

uðL; tÞ þ k2uxðL; tÞ ¼ l2ðtÞ; 0 6 t 6 T;
ð3Þ

where D2a
t and Da

t are Caputo fractional derivatives operator with respect to t, the rate a is an arbitrary nonnegative constant
and k is an arbitrary positive constant, x and t are the space and time variables, f, /i, li(i = 1,2) are sufficiently smooth pre-
scribed functions and ki(i = 1,2) are given prescribed constants.

The Caputo fractional derivative of order a > 0 is defined in [18] as

Da
t uðx; tÞ ¼

1
Cðm�aÞ

R t
0

@guðx;gÞ
ðt�gÞ1þa�m dg; m� 1 < a < m;

@muðx;tÞ
@tm ; a ¼ m 2 N:

8<
: ð4Þ

The main result is provided in Section 3, applying reproducing kernel theorem, we give the exact solution of problems
(1)–(3) in the form of series in the reproducing kernel space.

2. Reproducing kernel space method

In order to solve Eq. (1) in reproducing kernel space, we need to transform the nonhomogeneous boundary conditions (2)
and (3) into homogeneous boundary conditions, for the convenience, we still denote the solution of the new equation by
u(x, t), let

Luðx; tÞ , D2a
t uðx; tÞ þ aDa

t uðx; tÞ � k
@2uðx; tÞ
@x2 ¼ Fðx; tÞ; ð5Þ

subject to the initial and boundary conditions

uðx;0Þ ¼ 0; utðx; 0Þ ¼ 0;

uð0; tÞ þ k1uxð0; tÞ ¼ 0;

uðL; tÞ þ k2uxðL; tÞ ¼ 0;

ð6Þ

where L : WðXÞ ! L2ðXÞ;X ¼ ½0; T� � ½0; L�. In the following, we define the reproducing kernel space W(X).

Definition 2.1. The inner space WðXÞ ¼ fuðx; tÞj @4u
@x2@t2 is a completely continuous real value function in X;uðx;0Þ ¼

0;utðx;0Þ ¼ 0;uð0; tÞ þ k1uxð0; tÞ ¼ 0;uðL; tÞ þ k2uxðL; tÞ ¼ 0; @6u
@x3@t3 2 L2ðXÞg, where ki (i = 1,2) are given in (3). The inner

product and norm in W(X) are given respectively by

huðx; tÞ;vðx; tÞiw ¼
X2

i¼0

Z T

0

@3þi

@t3@xi
uð0; tÞ @

3þi

@t3@xi
vð0; tÞdt þ

Z T

0

Z L

0

@6

@x3@t3 uðx; tÞ @6

@x3@t3 vðx; tÞdxdt

þ
X2

i¼0

@2þi

@t2@xi
uð0;0Þ @

2þi

@t2@xi
vð0; 0Þ þ

Z L

0

@5

@t2@x3
uðx;0Þ @5

@t2@x3
vðx;0Þdx; kukw

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
huðx; tÞ;uðx; tÞiw

q
: ð7Þ

Lemma 2.1. W(X) is a reproducing kernel space. Its reproducing kernel function is

Rðx; y; t; sÞ ¼ R1ðx; yÞR2ðt; sÞ; ð8Þ

where R1(x,y) and R2(t, s) are reproducing kernel functions of W1[0,L] and W2[0,T], respectively. For any u(x, t) 2W(X),

uðy; sÞ ¼ ðuðx; tÞ;Rðx; y; t; sÞÞw: ð9Þ
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