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a b s t r a c t 

We study a variant of the Kuramoto model with a bi-harmonic coupling function, in which 

oscillators with positive first harmonic coupling strength are conformists and oscillators 

with negative first harmonic coupling strength are contrarians. We show that the model 

displays different synchronous dynamics and different dynamics may be characterized by 

the phase distributions of oscillators. There exist stationary synchronous states, travelling 

wave states, π state and, most interestingly, another type of nonstationary state: an oscil- 

lating π state. The phase distribution oscillates in a confined region and the phase differ- 

ence between conformists and contrarians oscillates around π with a constant amplitude 

and a constant period in oscillating π state. Finally, the bifurcation diagram of the model 

in the parameter space is presented. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The Kuramoto model of coupled phase oscillators has played a central role in the study of diverse systems in physics, 

biology and other domains since it was proposed by Kuramoto in 1975 [1] , particularly those involving synchronization 

transition. Examples include the synchronous flashing of groups of fireflies [2,3] , the coupling of oscillatory neurons in 

the suprachiasmatic nucleus of the brain governing circadian rhythms [4] , the interaction of cells containing oscillatory 

chemically reacting constituents [5] , Josephson junction circuits [6] , applauding persons in a large audience [7] , pedestrians 

on footbridges [8] , and many other systems [9–15] . 

The original Kuramoto model consists of N phase oscillators. Each oscillator has its own natural frequency ω chosen 

from a given probability density g ( ω) and interacts with the mean field with a global coupling strength K , which is positive, 

corresponding to an attractive interaction. A natural generalization of Kuramoto model is to allow K to have either sign. 

The negative coupling strength accounting for a repulsive interaction has been taken into consideration in recent years. 

Tsimring et al. considered the case in which the interaction between oscillators and the mean field is a repulsive one and 

found that phase locking among oscillators is destroyed for an array of non-identical phase oscillators provided that the 

number of oscillators is sufficiently large [16] . Some authors consider the local interaction among oscillators and found 

evidence of glassy behaviors when both positive and negative coupling strengths were allowed simultaneously [17,18] . Hong 

and Strogatz studied the situation in which the coupling strength is regarded as an oscillator’s ability reacting to the mean 
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field individually [19,20] . In their works, both positive and negative coupling strengths are present in the population. They 

found a surprising time-dependent state, a travelling wave state in which the mean field oscillates at a frequency different 

from the population’s mean natural frequency and the phase difference between conformists and contrarians are locked at 

an angle away from π . Moreover, the globally coupled oscillator systems with two different kinds of oscillators have also 

been well examined in many other studies [21–23] . 

Kuramoto showed [24] that the interaction between phase oscillators should take the general form of �(φi − φ j ) , where 

φi and φj are the phases of oscillators i and j and � is a 2 π-periodic function. The most of works on Kuramoto model 

only involve with the interaction taking the coupling form �(φi − φ j ) = sin (φi − φ j ) , which is the first harmonic of � in 

a Fourier expansion. Engelbrecht and Mirollo showed that the long-term average frequency as a function of the natural 

frequency displays a devil staircase when a second harmonic interaction term is introduced to the original Kuramoto model 

[25] . Tanaka and Aoyagi explored the behavior of phase oscillators with three-body interactions which actually leads to a 

second harmonic interaction term [26] , they found that this system can take an infinite number of synchronized states in 

a structurally stable manner by varying the initial condition. Using a variation of recent dimensionality-reduction technique 

of Ott and Antonsen (OA) ansatz [27] , Skardal et. al. studied coupled phase oscillators with single higher-order coupling 

[28] and characterized the cluster synchrony in the system. Recently, Komarov and Pikovsky study the Kuramoto model of 

globally coupled oscillators with a biharmonic coupling function [29] , they provide an analytic self-consistency approach 

to find stationary synchronous states in the thermodynamic limit and demonstrate that there is a huge multiplicity of 

synchronous states. Li et al. investigate the Kuramoto model incorporated with the first harmonic and the second harmonic 

interaction terms [30] , they show that the model displays the coexistence of multistable attractors and different attractors 

are characterized by the phase distributions of oscillators. 

Next, we give two examples of realistic physical systems where the second harmonic term is strong or even dominating. 

The first example is recently experimentally realized ϕ Josephson junctions [31] , where in the nonzero voltage state the 

phase “moves” viscously along a tilted periodic double-well potential. Therefore, one can expect strong effects caused by 

the second harmonics in the interaction. Another example is experiments with globally coupled electrochemical oscillators 

[32] , a strong second harmonic components has been observed in the coupling function inferred from experimental data. 

In this work, we will investigate the dynamics of the generalized Kuramoto model with a bi-harmonic interaction term. 

Here we focus on the model with a uniform probability density of natural frequency, which cannot be solved analytically by 

either the OA ansatz or the theoretical method proposed by Watanabe and Strogatz [33] . 

2. Model 

The governing equations for the model are 

˙ φi = ω i + 

K i 

N 

N ∑ 

j=1 

sin (φ j − φi ) + 

K 

N 

N ∑ 

j=1 

sin (2(φ j − φi )) , i = 1 , 2 , . . . , N. (1) 

where φi is the phase of the i th oscillator at time t and N is the number of phase oscillators in the system. ω i is the natural 

frequency of the i th oscillator and is chosen at random from [ −γ , γ ] , where γ is the width of natural frequency distribution. 

K i is the first harmonic coupling strength of the i th oscillator to the mean field and is chosen from a double- δ probability 

density �(K) = (1 − p) δ(K − K −) + pδ(K − K + ) , where K − < 0 and K + > 0 represent the couplings for the contrarians and 

conformists, respectively, and p denotes the probability that a random oscillator is a conformist. K is the coupling strength 

for the interaction through the second harmonic term. 

The collective rhythm in the model is quantified by a mean field-like quantity, namely, a complex order parameter Re i 	

which is defined as 

Z m 

= R m 

e im 	m = 

1 

N 

N ∑ 

j=1 

e imφ j , m = 1 , 2 . (2) 

In the model (1) , the extent of the synchronization is better reflected by the order parameter Z 2 . However, as shown in 

the following, though the order parameter Z 1 is not responsible for the onset of synchronization, it is still an important mea- 

sure reflecting the organization of oscillators in a microscopic view. R 1 and R 2 are the amplitudes of the order parameters 

Z 1 and Z 2 , respectively, and 	1 and 	2 are corresponding average phases. 

The complex order parameters in conformists and in contrarians are also important quantities to determine the dynamics 

in Eq. (1) and they are defined as Z ± = R ±e i 	± = 

1 
N ±

∑ 

j∈ S ± e iφ j , where S + (or S −) means the set of conformists (or contrari- 

ans) and N ± are the numbers of conformists and contrarians, respectively. 

3. Results and analysis 

We numerically investigate the dynamics in Eq. (1) by a fourth-order Runge–Kutta algorithm with a time step δt = 0 . 01 

and the quantities of interest are measured after a sufficient long transient is discarded. Throughout the work, we let N = 

10 0 0 0 , K − = −1 . 0 , K + = 2 . 0 , K = 0 . 1 and γ = 0 . 1 unless specified. Initially, we assign each oscillator a phase randomly 

drawn from [0, 2 π ]. 
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