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a b s t r a c t 

In this paper, a simple but accurate semi-analytical method to approximate probability 

density function of stochastic closed curve attractors is proposed. The expression of distri- 

bution applies to systems with strong nonlinearities, while only weak noise condition is 

needed. With the understanding that additive noise does not change the longitudinal dis- 

tribution of the attractors, the high-dimensional probability density distribution is decom- 

posed into two low-dimensional distributions: the longitudinal and the transverse proba- 

bility density distributions. The longitudinal distribution can be calculated from the deter- 

ministic systems, while the probability density in the transverse direction of the curve can 

be approximated by the stochastic sensitivity function method. The effectiveness of this 

approach is verified by comparing the expression of distribution with the results of Monte 

Carlo numerical simulations in several planar systems. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Noise or fluctuation is inevitably in dynamical systems models like mechanical, lasers, electronic circuits, chemical and 

biological systems which often disturbed by weak noises either due to reduction of system variables (internal noise) or 

due to environmental influence (external noise). For nonlinear dynamical systems, the interaction between nonlinearity and 

randomness can induce many nontrivial phenomena which have no analogue in the deterministic cases. Until now various 

noise-induced behaviors have been found, such as stochastic resonance [1] , coherence resonance [2] , noise-induced synchro- 

nization [3] , noise-induce bifurcation [4] and noise-induced chaos [5] , etc. 

When an attractor is disturbed by noises, the trajectories will leave this attractor temporarily, but most of them can be 

attracted back and form a cloud or bundle around the deterministic attractor, which is called stochastic attractor [6] . Under 

weak noises, when the initial probability density function (PDF) concentrates in the original deterministic attractor, the 

state of the system can stay at stochastic attractor for a very long time before the trajectory escapes to other deterministic 

invariant sets. Thereby, for weak noises perturbed systems, the response can be seen as stochastic attractors around the 

deterministic attractors and transitions between them. Thus it is meaningful to reveal PDF of stochastic attractors because 

the systems states are under them almost all the time. Although numerical simulation can easily describe the distribution 

of stochastic attractors, analytical methods are needed to both save the computation time and reveal the relation between 

distribution characters and system parameters. For continuous-time dynamical systems, the evolution of PDF can be detailed 
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by Fokker–Planck–Kolmogorov equation while for discrete-time dynamical systems by Frobenius–Perron integral equation. 

But often it is a difficult task to use these equations directly when dimension of the system is larger than one, thus many 

approximate methods were raised to obtain PDF under various specific conditions [7–11] , especially in nonlinear vibration 

field in which case the nonlinearity is weak and the solutions depend on small parameters [12] . 

Closed curve attractor is the simplest nontrivial attractor in nonlinear dynamical systems. It can be periodic or quasi- 

periodic (in discrete-time systems). Earlier researches of noise-disturbed closed curve attractors concentrated on limit cycle 

attractors near Andronov–Hopf bifurcation points, in which case the radial motion and angular motion can be separated 

[13,14] . For a fully developed limit cycle which is far from bifurcation points, Dykman [15] proposed a complex formula to 

get the stationary probability distribution near the circles. For orbital diffusions of closed curve, on the basis of the quasi- 

potential theory, Ryashko [16] proposed a method to analysis the stability of limit cycles in nonlinear dynamical systems. 

This idea was then further developed by Bashkirtseva who proposed the concept of stochastic sensitivity function (SSF) to 

describe the dispersion of stochastic closed curve attractors in the transverse direction [17,18] . The SSF method sheds light 

on the construction of PDF of stochastic non-trivial attractors in dynamical systems, especially for closed curve attractors. 

In this paper, it is indicated that, for closed curve attractors in weak additive noise disturbed system, the n -dimensional 

PDF of stochastic attractors can be decomposed into 1-dimensional longitudinal PDF and ( n − 1)-dimensional transverse 

PDF. The former is actually the natural measure of the deterministic circle and the latter can be calculated by SSF method. 

Consequently, the n -dimensional PDF of stochastic attractors can be expressed by production of 1-dimensional longitudinal 

PDF and ( n − 1)-dimensional transverse PDF. 

The outline of the paper is as follows: In Section 2 , the approximate analytical expression of stochastic closed curve 

attractors is presented. In order to get the transverse distribution, SSF method of limit cycle is detailed in Section 3 while in 

Section 4 SSF method for quasi-periodic closed curve attractors in discrete-time systems is discussed. In Section 5 validity 

of this approximate method is verified by several kinds of planar closed curves. Conclusions are drawn in Section 6. 

2. Approximation formula of stochastic closed curve attractor 

Consider a closed curve attractor Г in nonlinear dynamical system. According to Tél [19] , the probability that the trajec- 

tory visits different parts of the attractor (longitudinal PDF) is independent of noise intensity when noise is additive. That is 

to say, the 1-dimensional PDF of the disturbed circle coincides with the deterministic nature measure. So if we only focus on 

the orbital character of circle Г(phase character is ignored), it can be regarded that additive noise just pushes points away 

from the attractor transversely because the local probability flux in the longitudinal direction reaches a dynamical balance. 

When noise is weak and Gaussian, points deviate from the closed curve attractor and form a Gaussian distribution in the 

orthogonal hyperplane. It is found that although the Gaussian distributions in different parts of the attractor can intersect 

each other [20] , which destroys the invariance of longitudinal distribution and Gaussian shape of orthogonal distribution, 

this kind of intersect only happens in the tails of the Gaussian distributions and can be neglected for weak noise. Thus it 

is can be concluded that for weak additive Gaussian white noise disturbed closed curve attractor; ( 1 ) The PDF of stochastic 

attractors in the longitudinal direction equals the deterministic nature measure of the attractor; (2) The transverse PDF in 

the orthogonal hyperplane satisfies Gaussian distribution; (3) The longitudinal and the transverse PDFs are independent with 

each other. These conclusions coincide with the foundation in [15] that the product of the velocity along the circle times 

the area of the cross section of the probability distribution transverse to the circle is constant. 

Based on above understanding, a semi-analytical expression of stochastic closed curve attractors is presented which takes 

a simpler form compared with formula in [15] . Two types of coordinates need to be introduced. One is the global longi- 

tudinal coordinate s along the curve, and the other is local ( n −1) dimensional coordinate vector z which is defined in the 

transverse hyperplane at every point on the circle and originated at this point (see Fig. 1 for planar closed curve). The n - 

dimensional PDF of stochastic attractors can now be expressed by production of two independent low-dimensional PDF. One 

is 1-dimensional PDF, ρτ , that describes PDF along the global longitudinal coordinates, and the other is ( n −1)-dimensional 

PDF, ρn , which takes a Gaussian form and expresses PDF in the orthogonal hyperplane, namely: 

ρ(x ) = ρτ ( s (x ∗) ) ρn ( z(x ) ) (1) 

where x ∗ is the point on the circle that is nearest to x . 

Because noise cannot change the longitudinal PDF of stochastic attractors, this 1-dimenional distribution can be thus 

calculated from the deterministic attractors. First consider limit cycles in continuous-time systems. Suppose a point x ∗ on 

the limit cycle Г and an arc-length �s which contains x ∗.The magnitude of velocity at point x ∗ is : 

υ(x ∗) = ‖ f (x ∗) ‖ (2) 

where ‖ •‖ represents 2-norm.When �s → 0, the time for the trajectory to travel over this arc-length can be expressed as: 

d t = lim 

�s → 0 

�s 

υ(x ∗) 
= 

d s 

υ(x ∗) 
(3) 

Thereby, the probability of finding the state in this arc-length is: 

P ( s ( x ∗) ) = 

dt 

T 
= 

ds 

υ(x ∗) T 
(4) 
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