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a b s t r a c t 

The Kadomtsev–Petviashvili (KP) hierarchy is the archetype of infinite-dimensional inte- 

grable systems, which describes nonlinear ion acoustic waves in two-dimensional space. 

This remarkably ordered system resides on a singular submanifold (leaf) embedded in a 

larger phase space of more general ion acoustic waves (low-frequency electrostatic pertur- 

bations). The KP hierarchy is characterized not only by small amplitudes but also by irro- 

tational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating 

vorticity at every order of the reductive perturbation. Here, we modify the scaling of the 

velocity field so as to introduce a vortex term. The newly derived system of equations con- 

sists of a generalized three-dimensional KP equation and a two-dimensional vortex equa- 

tion. The former describes ‘scattering’ of vortex-free waves by ambient vortexes that are 

determined by the latter. We say that the vortexes are ‘ambient’ because they do not re- 

ceive reciprocal reactions from the waves (i.e., the vortex equation is independent of the 

wave fields). This model describes a minimal departure from the integrable KP system. By 

the Painlevé test, we delineate how the vorticity term violates integrability, bringing about 

an essential three-dimensionality to the solutions. By numerical simulation, we show how 

the solitons are scattered by vortexes and become chaotic. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The ion acoustic waves (IAWs) serve as a rich source of nonlinear phenomena. The combination of the nonlinearity 

(by fluid convection) and the dispersion (by the nonlocal electric interactions) enables IAWs to produce various structures 

ranging from order (such as solitons) to chaos (turbulences). At the simplest one-dimensional geometry, small-amplitude 

IAWs become solitons; Washimi and Taniuti [1] derived the Korteweg–de Vries (KdV) equation by the reductive perturba- 

tion method. The Kadomtsev–Petviashvili (KP) equation [2] is a two-dimensional generalization of the KdV equation, which 

was picked up by the ‘Kyoto School’ as the archetype of infinite-dimensional integrable systems [3,4] . Kako and Rowlands 

[5] derived three types of two-dimensional generalizations of Washimi and Taniuti’s result, including the KP equation. Di- 

verse directions of generalizations have been also studied; for example, variations of the KdV equation including finite ion 

temperature [6,7] , multi-ions [8] , and dust plasma [9] ; as well as variations of the KP equation including multi-ions [10] , 

dust plasma [11] , and multi-temperature [12,13] . The modifications to include third-order nonlinear terms were proposed 

by considering trapped electrons [14,15] . Effects of higher order terms in the reductive perturbation method have been also 

widely studied (see, e.g., Refs. [9,16,17] and references therein). The higher order perturbations are called clouds, and the 

solitons are called dressed solitons. 
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In this paper, we explore a new direction of generalization – we introduce a vorticity to the system, and delineate a 

fundamental change of dynamics brought about by the vortex. The KP hierarchy is characterized not only by small ampli- 

tudes but also by irrotational (zero-vorticity) velocity fields (see Section 2.2 ). We may view the ordered system of solitons 

as a singular submanifold (leaf) embedded in a larger phase space of finite-vorticity perturbations [18] . The departure from 

the zero-vorticity leaf will produce complexity and, finally, generate turbulence. The aim of this study is to probe into the 

‘neighborhood’ of the KP hierarchy and elucidate how chaos starts to develop. 

We organize this paper as follows. In Section 2 , we show that the KP equation is derived by eliminating vorticity at 

every order of the reductive perturbation. We also show that the reductive perturbation succeeds only if the entropy is 

homogeneous; hence the baroclinic effect, a creation mechanism of vorticity, must be absent ( Appendix A ). In Section 3 , we 

introduce a new ordering of velocity field in order to formulate a finite-vorticity system. The new system is composed of 

a generalized three-dimensional KP equation and a two-dimensional vorticity equation. The former describes ‘scattering’ of 

vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are ‘ambient’ because 

they do not receive reciprocal reactions from the waves. In Section 4 , we invoke the Painlevé test to study whether the 

new system is integrable or not. The result is negative. By this analysis, we elucidate that the scattering by the vorticity 

introduces an essential three-dimensionality in the wave fields, by which the integrability condition (in the sense of the 

Painlevé test) is broken. In Section 5 , we perform numerical simulations to visualize how chaos occurs. Section 6 concludes 

our investigations. 

2. Reductive perturbation method for Kadomtsev–Petviashvili equation and vorticity 

2.1. Kadomtsev–Petviashvili equation 

We start by remembering the derivation of the KP equation by the reductive perturbation method [1,2,5] . The basic equa- 

tions for nonlinear IAWs are expressed as 

∂n 

∂t 
+ ∇ · (n u ) = 0 , (1) 

∂ u 

∂t 
+ ( u · ∇ ) u = ∇ φ, (2) 

− �φ = n − e φ, (3) 

where n is the ion number density, u = (u, v , w ) � is the ion velocity, φ is the electrostatic potential, and � is the Laplacian. 

We consider cold ions and adiabatic electrons with a constant temperature T e . The variables are normalized as followings: 

the density n by a representative density n 0 , the velocity u by the ion sound speed c s = 

√ 

T e /m i (where m i is the ion mass), 

the electrostatic potential φ by the characteristic potential T e /e, the coordinate variable x by the Debye length 

√ 

ε 0 T e /n 0 e 2 , 

and the time variable t by the ion plasma frequency 
√ 

n 0 e 2 /ε 0 m i . 

We consider IAWs propagating in two-dimensional space ( x , y ). The extension to three-dimensional space ( x , y , z ) will be 

discussed later. We assume that waves propagate primarily in the direction of x , and introduce a set of stretched variables 

˜ x = ε(x − t) , ˜ y = ε2 y, ˜ t = ε3 t, (4) 

with a small parameter ε. The dependent variables n , φ, u , and v are expanded as ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

n = 1 + ε2 n 1 + ε4 n 2 + · · · , 

φ = 0 + ε2 φ1 + ε4 φ2 + · · · , 

u = 0 + ε2 u 1 + ε4 u 2 + · · · , 

v = 0 + ε3 v 1 + ε5 v 2 + · · · . 

(5) 

From the terms of orders ε2 and ε3 , we obtain n 1 = φ1 and ∂ n 1 /∂ ̃  x = ∂ u 1 /∂ ̃  x = ∂ φ1 /∂ ̃  x . Assuming the boundary conditions 

n 1 , φ1 , u 1 → 0 ( x → ±∞ ), we put 

n 1 = u 1 = φ1 . (6) 

From the terms of order ε4 , we obtain 

∂v 1 
∂ ̃  x 

= 

∂φ1 

∂ ̃  y 
(7) 

and n 2 = φ2 + φ2 
1 / 2 − ∂ 2 φ1 /∂ ̃  x 2 . From the terms of order ε5 , we obtain the two-dimensional KP equation: 

∂ 

∂ ̃  x 

(
∂φ1 

∂ ̃  t 
+ φ1 

∂φ1 

∂ ̃  x 
+ 

1 

2 

∂ 3 φ1 

∂ ̃  x 3 

)
+ 

1 

2 

∂ 2 φ1 

∂ ̃  y 2 
= 0 . (8) 
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