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in the case of quasi-stationary electromagnetic field. The Painlevé analysis of this equa-
tion is carried out and the general solution of the equation is constructed in terms of the
Weierstrass elliptic function. Solitary and periodic wave solutions for the components of
magnetic field are found and analyzed.
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1. Introduction

The electrons and ions in the two-fluid magnetohydrodynamics (MHD) are considered as interpenetrating conducting
liquids. It is also supposed that the main hydrodynamic parameters (a mass density, speed and pressure) depend on spatial
coordinates and time. A current density and magnetic field are used as electromagnetic parameters. Taking into account the
Maxwell equations, heat transfer equations and state equations for the electrons and ions, one can obtain a closed system
of equations (see, e.g. [1-3]).

This mathematical model is widely used in astrophysics for description of solar corona [4-7], plasma influenced by the
gravitational field of black holes [8] and in others applications [9-19]. However, these works was mainly devoted either to
the linear or long wave approximations or numerical investigation of mathematical models of the two-fluid MHD. Recently,
an attempt to study this model analytically was made in [20] and solitary traveling wave solutions for the magnetic field
were found. In this work we generalize these results and find the general traveling wave solution of this mathematical
model of the two-fluid MHD.

The rest of this work is organized as follows. In the next section we present a closed system of equation for the descrip-
tion of an ideal cold plasma in the two fluid approximation. Then we introduce traveling wave variables and transform this
system of equations into a system of two ordinary differential equations. Section 3 is devoted to constructing and analyzing
the general solution of this system of equations. In the last section we briefly summarize our results.
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2. Equations of two-fluid electromagnetic hydrodynamics (EMHD) of plasma
Let us consider the motion of an ideal cold plasma, so the heat transfer and state equations are not taken into account.

In addition, we assume that the plasma is quasi-neutral and the electromagnetic field is quasi-stationarity. In this case to
describe motion of the plasma the following system of equations can be used [1,20,21]:
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Here, n., n; are concentrations of electrons and ions and Ve, V; are their velocities, E is an electric field, B is an magnetic
field, j is a current density, ¢ is time, V is the Nabla operator. The first two equations in (2.1) are continuity equations of
electrons and ions, the third and fourth equations are equations of motion for electrons and ions, the next four equations are
the quasi-stationary Maxwell equations and the last equation expresses the assumption of the quasi-neutrality of plasma.

System of Eq. (2.1) is a complex system of nonlinear partial differential equations. However, this system of equations can
be considerably simplified if we use the following variables [22,23]:

P = Mele + myn;, (2.2)

U= meVe + miVi
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where U is a mass hydrodynamic velocity of the plasma and p is a mass density of the plasma. We also consider one-
dimensional motion of the ideal cold plasma assuming that d/0y = d/0z = 0.
As a result, system (2.1) takes the form:
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Thus, we get closed system of Eq. (2.4) with respect to the variables p, Uy, Uy, Uz, Ey, E;, By, B..
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