Accepted Manuscript

Improving the extraction of L-phenylalanine by the use of ionic liquids as adjuvants in aqueous biphasic systems

Hongpeng Yang, Li Chen, Cunshan Zhou, Xiaojie Yu, Abu ElGasim A. Yagoub, Haile Ma

PII: S0308-8146(17)31748-X

DOI: https://doi.org/10.1016/j.foodchem.2017.10.110

Reference: FOCH 21933

To appear in: Food Chemistry

Received Date: 20 April 2017 Revised Date: 19 October 2017 Accepted Date: 20 October 2017

Please cite this article as: Yang, H., Chen, L., Zhou, C., Yu, X., Yagoub, A.E.A., Ma, H., Improving the extraction of L-phenylalanine by the use of ionic liquids as adjuvants in aqueous biphasic systems, *Food Chemistry* (2017), doi: https://doi.org/10.1016/j.foodchem.2017.10.110

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Improving the extraction of L-phenylalanine by the use of ionic liquids as

adjuvants in aqueous biphasic systems

Running title: Extraction of L-Phe with ILs-ATPS

Hongpeng Yang¹, Li Chen², Cunshan Zhou^{1,*}, Xiaojie Yu¹, Abu ElGasim A. Yagoub³, Haile Ma^{1,*}

¹School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China

²Jiangsu Marine Resources Development Research Institute, Lianyungang, 222005, China.

³Faculty of Agriculture, University of Zalingei, P.O. Box: 06, Zalingei, Sudan

* Corresponding authors.

E-mail: cunshanzhou@163.com (Cunshan Zhou), Tel. & Fax: +86-511-88780201.

E-mail: mhl@ujs.edu.cn (Haile Ma), Tel. & Fax: +86-511-88790958

ABSTRACT

Polyethylene glycol (PEG) is widely used in the polymer-salt systems. However, the low polarity

of the PEG-rich phase limits the application of aqueous biphasic systems (ABS). To overcome this

disadvantage, a small quantity of ionic liquid (IL) was used as an adjuvant in ABS to enlarge the

polarity range. Therefore, an innovative study involving addition of 4 wt% imidazolium-based ILs

to the PEG 600/ NaH₂PO₄ ABS, aiming at controlling the phase behavior and extraction ability,

was carried out. The phase diagrams, the tie-lines and the partitioning behavior of L-phenylalanine

and ILs were studied in these systems. The results reveal that L-phenylalanine preferentially

partitions for the PEG-rich phase. The addition of 4 wt% IL to ABS controls the partitioning

behavior of L-phenylalanine, which depends on the type of IL employed. Moreover, it is verified

that increasing temperature lead to a decrease in the partition coefficient of L-phenylalanine.

Keywords: Aqueous biphasic systems; Ionic liquids; Polyethylene glycol; L-phenylalanine

1

Download English Version:

https://daneshyari.com/en/article/7586334

Download Persian Version:

https://daneshyari.com/article/7586334

Daneshyari.com