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a b s t r a c t

The problem of radiative–conductive–convective heat transfer in a three-dimensional
domain is studied in the framework of the diffusion (P1) steady-state approximation.
The unconditional unique solvability of this nonlinear model is proved in the case of
Robin-type boundary conditions for the temperature and the mean intensity function.
An iterative algorithm for the numerical solution of the model is proposed. Numerical
examples demonstrating the importance of the radiative heat transfer at high
temperatures are presented.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The interest in studying problems of complex heat transfer (where the radiative, convective, and conductive contributions
are simultaneously taken into account) is motivated by their importance for many engineering applications. Here, the fol-
lowing examples can be mentioned: modeling the heat transfer in combustion chambers and industrial furnaces, estimating
the efficiency of cooling systems, predicting heat transfer in glass manufacturing, control of thermal processes in optical fiber
production, etc.

The common feature of such processes is the radiative heat transfer dominating at high temperatures. The radiative heat
transfer equation (RTE) is a first order integro-differential equation governing the radiation intensity. The radiation traveling
along a path is attenuated as a result of absorption and scattering, and it is amplified due to emission and incoming scatter-
ing along the path. The precise derivation an analysis of such models can be found in the monograph [1].

Solutions to the RTE can be represented in the form of the Neumann series whose terms are powers of an integral oper-
ator applied to a certain start function. The terms can be calculated using a Monte Carlo method, which may be interpreted
as tracking the history of energy bundles from emission to adsorption at a surface or within a participating medium. The
method assumes that the bundles start from random points, propagate in random directions, and show the energy exchange
due to random scattering (see e.g. [2,3]).
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Examples of numerical analysis of one-dimensional heat transfer models coupled with the RTE can be found in [3–5]. In
[6] the unconditional unique solvability of one-dimensional steady-state complex heat transfer problems is proved. Papers
[7,8] state conditional unique solvability in three dimensions.

A way of avoiding the solution of the integro-differential RTE is the use of expansions of the local intensity in terms of
spherical harmonics, with truncation to N terms in the series, and substitution into the moments of the differential form
of the equation of transfer (see e.g. [1]). This approach leads to the PN approximations, where N is the order of the approx-
imations. As N approaches infinity the solutions obtained became exact. Usually, the odd orders are employed, especially P1

and P3. Going to P5, increase the accuracy, but the complexity of the calculations becomes unacceptable. It is important that
the PN approximation of the RTE is a local partial differential equation supplied with appropriate boundary and initial con-
ditions. The work [9] studies the diffuse (P1) approximations of three-dimensional complex heat transfer models. Asymptot-
ical expansions are proposed, and computations related to the glass manufacturing process are performed. Paper [10]
considers a three-dimensional transient SPN (some modification of PN) approximate model and presents extensive numerical
simulations. In [11], a three-dimensional transient SP1 model is considered, theoretical backgrounds for the development of
optimal control techniques are established, and numerical simulations are conducted.

Especially interesting is the use of steady state PN and, in particular, P1 approximations because they describe steady-state
temperature distributions and do not require high computational efforts. The main difficulty related to steady-state models
is the absence of theoretical results on the unique solvability in three dimensions. In the one-dimensional case, the condi-
tional unique solvability is proved in [12]. For three-dimensional models, the existence and conditional uniqueness of solu-
tions is proved in [13–15]. Here, sufficient conditions of the uniqueness are a small size of the heat-transfer domain and a
large convection velocity. The last paper also addresses a control problem and formulates necessary optimality conditions.

In the present paper, new results on the uniqueness are obtained. Namely, the unconditional unique solvability, without
smallness or largeness assumptions, is proved in the case of Robin-type boundary conditions for the temperature and the
mean intensity function.

2. Model description

The following steady-state normalized diffusion (P1) model (see [1]) describing radiative, conductive, and convective heat
transfer in a bounded domain G � R3 is under consideration:

�aDhþ v � rhþ bjajhjh3 ¼ bjau; �aDuþ jau ¼ jajhjh3: ð1Þ

Here, h is the normalized temperature, u the normalized radiation intensity averaged over all directions, v a given
divergence free velocity field, and ja the absorption coefficient. The constants a; b, and a are given by the formulas

a ¼ k
qcv

; b ¼ 4rn2T3
max

qcv
; a ¼ 1

3j� Ajs
;

where k is the thermal conductivity, cv the specific heat capacity, q the density, r the Stefan–Boltzmann constant, n the
refractive index, Tmax the maximum temperature in the unnormalized model, j :¼ js þ ja the extinction coefficient (total
attenuation factor), and js the scattering coefficient. The coefficient A 2 ½�1;1� describes the anisotropy of scattering.

The following boundary conditions on C :¼ @G are assumed:

a@nhþ cðh�H0ÞjC ¼ 0; a@nuþ bðu�H4
0ÞjC ¼ 0; ð2Þ

where H0; b, and c are given functions defined on C, and the symbol @n denotes the derivative in the outward normal
direction.

3. A priori estimates of weak solutions

Assume that G is a Lipschitz bounded domain with the boundary C consisting of a finite set of smooth pieces. Let ð�; �Þ and
k � k be the inner product and the norm of the space L2ðXÞ, respectively. The Lebesgue space LpðXÞ;1 6 p 61, and the Sobolev
space HmðXÞ :¼Wm

2 ðXÞ, m 2 N, are supposed to be defined in the conventional way.
Suppose that the model data satisfy the following conditions:

(i) v 2 H1ðGÞ \ L1ðGÞ; r � v ¼ 0;
(ii) H0; b; c 2 L1ðCÞ; 0 6 H0 6 M; b P b0 > 0; c P c0 > 0;

(iii) cþ ðv � nÞP c0 > 0 on the boundary part where ðv � nÞ < 0.

Here, M; b0; c0, and c0 are positive constants.

Definition 1. A pair ðh;uÞ 2 H1ðGÞ � H1ðGÞ is called weak solution of the problem (1) and (2) if
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