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a b s t r a c t

In this paper, we are interested in the control of a chaotic hybrid system with an applica-
tion to Chua’s system. It is known that chaotic attractors contain an infinite number of
unstable periodic orbits (UPO) with different lengths, our idea consists in stabilizing a pre-
determined orbit of a given length by using an optimal control method. Our approach is to
determine the switching instants from one subsystem to the other while minimizing the
difference between two successive orbits. Should the switchings be state dependent, as
is the case for the well known Chua’s circuit, then our approach consists in perturbing
the switching boundaries such that the system trajectory hits those boundaries at the spec-
ified instants. Numerical simulations illustrating the efficiency of the proposed method are
presented.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The last two decades have witnessed a great interest in nonlinear dynamical systems with a special attention to those
having chaotic behavior. In fact, the emergence of new mathematical and numerical tools played a crucial role to understand,
characterize and quantify chaos. This helped researchers to identify chaos in many scientific disciplines such as biology [1],
chemistry [2] and engineering applications [3–5]. Actually, the research on chaotic systems can be classified into three main
streams: Investigating new chaotic systems [6,7], synchronizing chaotic systems[8,9] and controlling chaos [10]. Our present
work falls within the third stream.

After the pioneering work on controlling chaos introduced by Ott et al. [11], there have been many other attempts to con-
trol chaotic systems with three main aims. The first, which is merely classic, consists in stabilizing one of the unstable equi-
librium points [12–15]. The second, uses the control strategy to achieve synchronization [16–19] or anti-synchronization
[20,21]. The third, is the most important when it comes to the control of chaotic systems, and concerns the stabilization
of unstable periodic orbits embedded in the chaotic attractor [22–27].

As a matter of fact, the stabilization of chaotic systems UPO’s is of particular interest. Indeed, the need to stabilize a UPO
of a chaotic system raises from the application itself. For instance, the voltage ripple in an H-bridge inverter is much smaller
when it is behaving periodically [28]. When a stepper motor behaves chaotically [29], it becomes impossible to use it in an

http://dx.doi.org/10.1016/j.cnsns.2014.06.026
1007-5704/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Control and Energy Management Laboratory, National Engineering School of Sfax, University of Sfax, BP 1173, 3038 Sfax,
Tunisia. Tel.: +216 21196096.

E-mail addresses: miladi.yosra@yahoo.fr (Y. Miladi), moez.feki@enig.rnu.tn (M. Feki), n.derbel@enis.rnu.tn (N. Derbel).

Commun Nonlinear Sci Numer Simulat 20 (2015) 1043–1056

Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2014.06.026&domain=pdf
http://dx.doi.org/10.1016/j.cnsns.2014.06.026
mailto:miladi.yosra@yahoo.fr
mailto:moez.feki@enig.rnu.tn
mailto:n.derbel@enis.rnu.tn
http://dx.doi.org/10.1016/j.cnsns.2014.06.026
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


open loop control system. A chaotic macroeconomic growth cycle [30] is unpredictable and leads to difficulty in organizing
long delay projects. The aforementioned examples indicate that rendering a chaotic system periodic is a worthy endeavor.

One of the most appealing method to control UPO’s is the time-delayed feedback control (TDFC) that has been described
by Pyragas [22]. It consists in adding an external force proportional to the error between the current state of the system and
the one period delayed state. The continuous TDFC has been successfully applied to control the UPO’s of Chua’s system [26].

In this work, we are interested in hybrid chaotic systems characterized by non-smooth dynamic systems [31]. In fact such
systems are well known in power electronics such as the H-bridge inverter [32,33] and DC/DC power converters [5]. Hybrid
systems are known to toggle among several continuous-time dynamical systems according to a discrete switching law.
Should the continuous-time systems be unstable and the global behavior be bounded, then such systems are more likely
to exhibit chaotic motion due to the existence of stretching and folding reasons [34,35]. To control chaos in hybrid systems
several methods have been developed such as the time-delayed impulsive control [36], discrete state feedback [37] and pole
assigning [38].

In the present paper, we suggest to control a UPO of a hybrid chaotic system by using an optimal controller that intends to
optimize the switching instants by optimizing a performance criteria in terms of the error between the orbit and the delayed
one. If the switching of the hybrid system is rather state dependent, then our approach consists in modifying the switching
boundary such that the system trajectory hits the boundary at the specified time. The boundary perturbation should be anni-
hilated when the predetermined UPO is stabilized. To illustrate the efficiency of our method we consider Chua’s system as a
switched system that toggles among three linear systems according to the state position in the phase space. An in depth
analysis of the periodic and chaotic behaviors in the Chua circuit system viewed as a switching system can be found in
[39–41].

This paper is organized as follows. In the second section we formulate the problem with respect to a general hybrid sys-
tem. In the third section we apply the proposed control method to the well known Chua’s system and we illustrate its effi-
ciency using numerical simulations. Finally in the last section we present some concluding remarks.

2. Problem formulation

A hybrid dynamic system is an interaction between continuous-time systems described by differential equations and dis-
crete-event dynamics. Such systems can be described as follows:

_xðtÞ ¼ f ðxðtÞ;uðtÞ; qðtÞÞ ¼ fqðtÞðxðtÞ;uðtÞÞ; xðt0Þ ¼ x0 ð1Þ

qðtÞ ¼ dðxðtÞ; qðt�ÞÞ; qðt0Þ ¼ q0 ð2Þ

where uðtÞ 2 Rnu is an input signal to the hybrid system, qðtÞ 2 Q ¼ fn1; . . . ;njQ jg (here jQ j is the cardinal of Q) is the discrete
state that defines the active subsystem fqðtÞ and xðtÞ 2

S
i2Q Xi # Rn is the continuous state vector; Xi’s are closed subsets (pos-

sibly unbounded) with pairwise disjoint interiors. We denote by qðt�Þ the left limit of the discrete state at time t, we use
ðxðtÞ; qðtÞÞ to denote the hybrid state belonging to the hybrid space H ¼ Rn � Q and d : H ! Q stands for the discrete transi-
tion map. The transition between the hybrid state ðxðt�Þ; qðt�ÞÞ to ðxðtÞ; qðtÞÞ occurs along a switching surface
rij ¼ fx 2 Xi \ Xjg with qðt�Þ ¼ i and qðtÞ ¼ j. It is also assumed that xðt�Þ ¼ xðtÞ so xðtÞ is piecewise continuous C1 function
for all t P 0. We say xðtÞ is a trajectory of (1) if for every t P 0 such that _xðtÞ is defined, the Eq. (1) holds for all i with xðtÞ 2 Xi.

Let us furthermore assume that within a finite time interval of length T (t 2 ½t0; t0 þ T�), the trajectory xðtÞ undergoes a
finite number of switchings N at times fs0; s1; . . . ; sNþ1g; where s0 ¼ t0 and sNþ1 ¼ t0 þ T. Therefore we can define a sequence
S ¼ fs0; s1; . . . ; sNg of discrete states associated with the continuous trajectory xðtÞ such that sm 2 Q and

sm ¼ qðtÞ; sm 6 t < smþ1; . . . m ¼ 0;1; . . . ;N ð3Þ

The sequence S together with the trajectory xðtÞ define a hybrid trajectory for which we define the periodicity property as
given in [36] and that we recall hereafter.

Definition 1. For any t P 0, if there exists some constant T > 0 such that xðtÞ ¼ xðt þ TÞ, then we say the system is traveling
on a continuous T-periodic orbit.

Definition 2. For any integer m > 0, if there exists some integer constant k > 0 such that the symbolic sequence has the
property sm ¼ smþk, then we say the system is traveling on a discrete period k orbit.

It is worth noting that a trajectory with a periodic sequence S does not imply that the continuous trajectory is periodic.
However, if both definitions are satisfied, then we say the system is traveling on a hybrid periodic orbit.

In this work, we focus on autonomous hybrid systems having a chaotic behavior. Knowing that a chaotic attractor con-
tains an infinite number of UPO’s with different lengths, then a predetermined UPO of length Tp denoted by xpðtÞ should sat-
isfy (1), that is we have:

_xpðtÞ ¼ f ðxpðtÞ; qpðtÞÞ; ð4Þ
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