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a b s t r a c t

This paper describes the application of a recently developed analytic approach known as
the homotopy analysis method to derive an approximate solution to the nonlinear Pois-
son–Boltzmann equation for semiconductor devices. Specifically, this paper presents an
analytic solution to potential distribution in a DG-MOSFET (Double Gate-Metal Oxide
Semiconductor Field Effect Transistor). The DG-MOSFET represents one of the most
advanced device structures in semiconductor technology and is a primary focus of model-
ing efforts in the semiconductor industry.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The potential distribution in a 1-D silicon semiconductor device is described by a variant of the nonlinear Poisson–Boltz-
mann equation,
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where w is the electric potential, x is distance, NA is the doping concentration in the silicon film, Ni is the intrinsic carrier
concentration, qe is the charge of an electron, es is the permitivity of silicon, and /t = kT is the thermal voltage where k is
the Boltzmann constant and T is temperature. By applying different boundary conditions, a wide range of semiconductor de-
vices can be modeled. This paper focuses on a large class of devices known as DG-MOSFETs (Double Gate-Metal Oxide Semi-
conductor Field Effect Transistors) which are described by the following boundary conditions
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Two particular devices that have seen a lot of attention lately are the Symmetric DG-MOSFET [1–6] and the thin-film
MOSFET on a thick insulating substrate [7–10]. The former is one of several technologies promising to extend Moore’s
Law [11], and the latter is of interest to the flat-panel display community. Both of these devices can be modeled by applying
boundary conditions (2) and (3) to (1).

Although many specialized commercial packages are available to compute numerical solutions to (1) using finite differ-
ence or finite element techniques and generic math packages such as Mathematica can compute numeric solutions using
Runge–Kutta techniques, there has been very little published on analytical techniques. In this paper, we apply an analytic
solution technique, the homotopy analysis method (HAM), to the Poisson–Boltzmann equation for semiconductor devices.

Developed in 1992 by Liao [12,13], HAM is a general analytic technique for generating series solutions to various kinds of
nonlinear problems in science and engineering. Many problems have already been solved using HAM including nonlinear
oscillations [14–17], boundary layer flows [15,18,19], heat transfer [19,20], nonlinear water waves [17,21], the Thomas–
Fermi equation [22,23], and many more. Unlike perturbation methods, the range of validity of the HAM solution is not
limited to problems with small or large parameters. HAM provides a simple way to ensure the convergence of the series solu-
tion and is therefore valid for strongly nonlinear problems. Most importantly, HAM provides the freedom to choose the prop-
er basis functions which are specific to each particular nonlinear problem. Along with the basis functions, the user of HAM
must also choose other parameters and functions including the initial approximation, the auxiliary linear operator, the aux-
iliary function, and the auxiliary parameter. These user-specified parameters and functions will be discussed in Section 2.
Although Liao provides some general rules for choosing these parameters, currently there are no specific rules governing
these choices. The user must employ a ‘‘trial and error” approach in order to obtain parameters and functions that lead to
a rapidly converging series solution.

2. An overview of HAM

Consider the following differential equation:

A½uðtÞ� ¼ 0 ð4Þ
where A is a nonlinear operator, t is the independent variable, and u(t) is the exact solution of the nonlinear differential
equation. Let uo(t) be an initial approximation for u(t). HAM is based on a mapping from u(t))U(t;q) such that as q, the
so-called embedding parameter, goes from 0 to 1, U(t;q) varies from the initial guess uo(t) to the exact solution u(t). This
mapping is generated by the zero-order deformation equation which is expressed as

ð1� qÞL½Uðt; qÞ � uoðtÞ� ¼ q�hHðtÞA½Uðt; qÞ� ð5Þ

where U(t;q) is subject to the initial boundary conditions and where ⁄ – 0 is the auxiliary parameter, H(t) – 0 is the auxiliary
function, and L is the auxiliary linear operator.

First of all, it is assumed that ⁄, H(t), uo(t), and L are chosen such that the solution U(t;q) to the zero-order deformation
equation exists as do all derivatives with respect to q. Then defining
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where u½k�o is called the kth-order deformation derivative and
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U(t;q) can be expanded in a power series in q
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or
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From (9) it can be seen that when q = 1 then

uðtÞ ¼ uoðtÞ þ
X1
k¼1
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where uo(t) satisfies the stated boundary conditions and each uk(t) has zero boundary values. The Kth order HAM approxi-
mation of u(t) is given by
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