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a b s t r a c t

The non-local model of heat transfer, used to describe the deviations of the temperature
field from the well-known prediction of Fourier/Cattaneo models experienced in complex
media, is framed in the context of fractional-order calculus. It has been assumed (Borino
et al., 2011 [53], Mongioví and Zingales, 2013 [54]) that thermal energy transport is due
to two phenomena: (i) A short-range heat flux ruled by a local transport equation; (ii) A
long-range thermal energy transfer proportional to a distance-decaying function, to the rel-
ative temperature and to the product of the interacting masses. The distance-decaying
function is assumed in the functional class of the power-law decay of the distance yielding
a novel temperature equation in terms of a-order Marchaud fractional-order derivative
ð0 6 a 6 1Þ. Thermodynamical consistency of the model is provided in the context of Clau-
sius–Plank inequality. The effects induced by the boundary conditions on the temperature
field are investigated for diffusive as well as ballistic local heat flux. Deviations of the tem-
perature field from the linear distributions in the neighborhood of the thermostated zones
of small-scale conductors are qualitatively predicted by the used fractional-order heat
transport model, as shown by means of molecular dynamics simulations.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The need for non-local thermodynamics in physical sciences and engineering may be traced back to the mid of the last
century in the attempt to capture the experimental effects unpredicted by Fourier diffusion theory. Indeed several experi-
mental observations of temperature field at metal interfaces as well as of the changes in conductivity parameters in the
neighborhood of thermostated regions (Kapitsa phonon-scattering) shows a localization of temperature gradients close to
the borders [1].

Similar phenomena have been observed with molecular dynamics (MD) simulations of heat transfer in nanowires show-
ing that the presence of thermostated regions involves a phonon–phonon scattering that modifies the conductivity property
of the materials [2,3].

Such studies have been further developed toward the use of advanced mathematical tools as the fractional-order calculus
[4] to capture memory [5,6] as well as non-local effects [7–9]. Indeed fractional (real) order integro-differential operators
have been introduced more and more often in several contexts of physics and engineering for their capability to interpolate
among the well-known integer-order operators of classical differential calculus [10]. In this regard some applications may be
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found in the study of temporal and spatial evolution of complex systems close to critical points [11–14] or in stochastic set-
ting [15–17]. Fractional-order differential calculus is widely used, also, to model the mechanical behavior of polymers, gels,
foams and glassy materials [18–22] but also to model the rheology of soft matter and biological tissues [23–25]. States and
free energies for non-linear geometries [26–30] in terms of fractional-order derivatives may also be formulated.

The long-tails of fractional operators have been used to formulate non-local stress–strain constitutive equations that are a
particularized version of the integral model of non-local elasticity [31,32]. The same feature has been also used by the author
and its research team to derive a mechanically-based fractional-order non-local elasticity in statics [33–36] and wave prop-
agation contexts [37,38] (see e.g. [39] for a complete review).

The presence of spatial non-local effects, observed in heat transport framework, has been introduced by means of integral
models involving, beside the local gradient of the temperature field, an integral convolution among the temperature gradient
and a real-order attenuation function [40–42]. The non-local formulation, originally proposed by Eringen and his co-workers,
has been used, recently, to model thermoelastic coupling in microelectromechanical resonators (MEMRS) [43,44]. Some gen-
eralization of this theory may be useful to the analysis of small-scale systems accounting for second-sound effects [45–47]
modeled with a first-order time derivative of the heat flux [48–50] and introducing a generalized entropy [51,52].

Very recently a non-local model of thermal energy transport has been proposed with a physical picture of heat transfer in
1D setting. It has been assumed that the non-local residual in the balance equation is due to a volume integral over the body
domain of the elementary long-range heat transport among adjacent and non-adjacent locations of the body [53]. The long-
range thermal energy contribution is modeled as two point function PðnlÞ x; y; tð Þ that depends on: (i) A decaying function
decreasing with the distance of the interacting elements; (ii) The relative temperatures among locations and (iii) The product
of the masses at locations x and y [54].

In this paper it is shown that, assuming the decaying function in the functional class of power-laws of the distance, the
balance principle involves fractional-order non-local residuals. The correspondent temperature equation is obtained in terms
of Marchaud-type fractional derivatives in unbounded domains. A different scenario appears as the thermal energy exchange
in bounded domains is considered since only the integral contributions to the Marchaud fractional derivatives defined on
bounded regions appear. It follows that the divergent algebraic contributions at the borders are not included in the formu-
lation allowing for the position of non-homogeneous Dirichlet boundary conditions straightforwardly. Moreover the Neu-
mann boundary conditions associated to the fractional-order temperature equation involve, only, the gradient of the
temperature field as in well-known local heat transport theories.

The effects induced by the non-homogeneous boundary condition is further investigated, in this paper, either for diffusive
and ballistic/diffusive thermal energy exchange. The numerical results reported in the analyses describe the temperature
field in 1D rigid conductors showing that the proposed model of fractional-order thermal energy exchange may capture
the non-uniform temperature distribution observed in Kapitsa experiments as well as in molecular dynamics simulations.

2. The fractional model of thermal energy exchange in rigid bodies: the second law of thermodynamics

In this section the fractional-order model of thermal energy exchange is derived for a diffusive heat transport. In the first
part of the section the balance equation as well as the second law of thermodynamics will be shortly recalled. The second
part of the section is dedicated to a numerical simulation of the temperature field in a 1D rigid conductor in presence of long-
range thermal energy transport. The effects of the differentiation order on the temperature field in bounded conductors have
been addressed with a numerical simulation code.

The main idea beyond the proposed model of non-local thermodynamics relies on the assumption that the energy balance
at location x 2 R3 of a rigid body, encapsulated in a subset V � R3 with boundary surface S ¼ @V , involves the following
contributions:

1. The thermal energy flux among adjacent locations, that it is related to the divergence $ � qðx; tÞ of the heat flux density
vector qðx; tÞ.

2. A non-local energy transfer, due to the contribution of the elements y 2 R3 of the body, that it is assumed proportional to
the mass densities of the interacting elements at the locations x and y as

PðnlÞ x; y; tð Þ ¼ vðnlÞ x; y; tð ÞqðxÞqðyÞdVxdVy ð1Þ

where vðnlÞ x; y; tð ÞqðyÞdVy is the long-range specific energy per unit time transferred at locations x by the element at the loca-
tion y and q is the mass density that is time-independent. Under some restriction of the functional dependence of the long-
range specific energy PðnlÞ x; y; tð Þ, a Marchaud-type, fractional-order, non-local model of thermal energy transport is obtained
in unbounded domains. In bounded domains, instead, only integral parts of fractional-order operators are involved.

This latter consideration yields two key features of the fractional model of long-range heat transport: (i) The Non-Homoge-
neous Dirichlet boundary conditions of the temperature field along the boundary Sd, namely Tðx; tÞ ¼ Tðx; tÞ with x 2 Sd may
be easily accounted for since the divergent algebraic contribution to the Marchaud fractional derivatives do not appear; (ii)
The Neumann boundary conditions on the free surface Sn involves, only, the local contribution to the heat transfer in terms of
gradients of the temperature field r � Tðx; tÞ with x 2 Sn since the overall residual reads:
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