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Thus, the picture of synchronization in such systems acquires many new features not
inherent to finite-dimensional ones. A picture of oscillation modes in cases of identical
and non-identical coupled oscillators is studied in detail. Periodical structure of amplitude
death and “broadband synchronization” zones is investigated. Such a behavior occurs due
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1. Introduction

Study of synchronization effects in systems of coupled oscillators is an important problem of the modern nonlinear
dynamics [1-5]. In particular, a problem of synchronization of time-delayed systems is of great importance because such
systems are widespread in neuronal dynamics, nonlinear optics, biophysics, geophysics, telecommunication and information
engineering, economics, and ecology [3,6-21]. Systems with time delay are usually described by functional delay-differential
equations (DDEs). DDEs are known to have infinite-dimensional phase space [17,18] and are capable of demonstrating a vari-
ety of dynamic regimes including chaos [3,9-12,15].

Among the various effects which are observed in systems of interacting oscillators, the amplitude death (AD) effect has
been a topic of interest [1,22-29]. AD is a phenomenon of oscillation suppression as a consequence of dissipative coupling.
Such a behavior is also characterized by suppression of amplitudes to zero values. AD is desirable in various applications
where fluctuations should be suppressed and a constant output is needed. In particular, the amplitude death caused by
the time delay in coupling has been studied in many works [25-29]. On the contrary, in [30] it was shown that the delay
coupling may induce chaotic behavior, even in a simple system of coupled oscillators.

Features of synchronization of time-delayed systems have been studied in several works. A comprehensive review of the
problem has been recently given in [21]. In particular, Usacheva and Ryskin [31] have investigated the forced synchroniza-
tion of a delayed-feedback oscillator driven by an external harmonic signal. Mensour and Longtin [32] have considered
drive-response synchronization of two time-delayed systems with application to secure communication. Ghosh et al. [33]
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have investigated a problem of synchronization between two forced oscillators with unidirectional coupling, when one oscil-
lator has the time delay. In [34], Ghosh et al. have studied a design of delay coupling for targeting desired regime (synchro-
nization, anti-synchronization, lag-synchronization, amplitude death, and generalized synchronization) in mismatched
time-delayed dynamical systems.

There exists a great variety of coupling topologies between oscillators with delay. In particular, the networks with time-
delayed dissipative linear coupling, as well as pulse-coupled time-delayed networks, have been widely investigated [21].
Many of radio-frequency, microwave, and optical oscillators utilize a power amplifier with input connected with output
via a time-delayed feedback loop [11,12,31,35,36]. The most natural way to couple two of such systems is to feed a portion
of power from the feedback loop of one oscillator into the feedback loop of another one, and vice versa. In such a case, we
have a specific type of coupling, i.e. a nonlinear time-delayed dissipative coupling, which has not been studied previously. In
Section 2, we consider a model of coupled oscillators described by a system of coupled DDEs. In Section 3, we study synchro-
nization of two oscillators with identical parameters. Section 4 contains extension to the case of non-identical oscillators.
Oscillators with frequency mismatch, as well as with non-identical excitation parameters which determine the oscillation
amplitudes, are considered. Transitions between different synchronization regimes are investigated. A special attention is
paid to peculiarities of amplitude death and “broadband synchronization” (BS). BS has previously been observed in ensem-
bles of finite-dimensional dissipatively coupled oscillators with non-identical excitation parameters, which are responsible
for the oscillation amplitudes [4,37,38]. In such systems there appears a domain of synchronous regimes, which looks like a
narrow band located between the AD and quasi-periodic domains and extends to very large values of the frequency mis-
match. In the BS domain, the oscillator with larger amplitude dominates and suppresses natural oscillations of the other
oscillators.

2. Model and basic equations
2.1. Single delayed-feedback oscillator

Consider a general scheme of a delayed-feedback ring-loop oscillator presented in Fig. 1(a). The oscillator consists of a
nonlinear power amplifier, a bandpass filter, and a feedback leg containing a delay line, a variable attenuator, and a phase
shifter. The filter is assumed to be narrow-band with Lorenz-shape frequency response. In such a case, it is convenient to
express the signal as a quasi-harmonic oscillation with slowly varying amplitude A(t) and carrier frequency
w.: A(t) exp(ioct). It is convenient to choose w. = wy Where y is a central frequency of the filter passband (Fig. 1(a)). Under
this assumption, one can derive an equation describing the dynamics of the slow amplitude [11,12,31]

S A af (A el )
Here y = wy/2Q is the parameter of losses, Q is the filter Q-factor, o = ypG is the parameter of excitation, p is the amount of
feedback, G is the small-signal gain factor of the amplifier, 0 is the phase shift in the feedback loop, f and ® are nonlinear
amplitude and phase transfer functions of the amplifier, respectively, and 7 is the delay time.

Further we suppose that the nonlinear amplitude response of the amplifier is approximated by a cubic polynomial and
neglect the phase nonlinearity. In such a case, Eq. (1) becomes

% + A —0e(1— |A(t— 7))A(t—7) = 0. @

Note that without the delay Eq. (2) becomes the well-known normal form for Andronov-Hopf bifurcation [39].
Dynamics of this oscillator has been studied in detail [31,35,36]. It was shown that for a single-frequency solution
A = Rp exp(iwt), where Ry, may assumed to be real without loss of generality, the eigenfrequencies obey the equation

= —ytan(wt - 0). 3)

This equation has infinite number of complex roots, since time-delayed systems with infinite-dimensional phase space have
infinite number of eigenmodes. However, only the roots with cos(wt — 0) > 0 correspond to stable eigenmodes. Their ampli-
tudes satisfy the equation
V% + w? o
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These solutions exist when the excitation parameter o exceeds the self-excitation threshold

Ut = 4/ P2 + 2. (5)

The self-excitation boundary on the 0-o parameter plane has the shape of a periodic set of domains named ‘“generation
zones”. In the centers of such generation zones at 0 = 2nn the frequency w = 0, i.e. generation arises with frequency equal
exactly to the resonance frequency of the filter. Accordingly, the self-excitation threshold is minimal: o, = ). At the borders
of generation zones at 6 = 27tn + 7 two eigenfrequencies are spaced equally from the central frequency. Here, there are
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