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a b s t r a c t

The problem of re-stabilization via parametric excitation of statically unstable linear Ham-
iltonian systems is addressed. An n-degree-of-freedom dynamical system is considered, at
rest in a critical equilibrium position, possessing a pair of zero-eigenvalues and n � 1 pairs
of distinct purely imaginary conjugate eigenvalues. The response of the system to a small
static load, making the zero eigenvalues real and opposite, simultaneous to a harmonic
parametric excitation of small amplitude, is studied by the Multiple Scale perturbation
method, and the stability of the equilibrium position is investigated. Several cases of res-
onance between the excitation frequency and the natural non-zero frequencies are studied,
calling for standard and non-standard applications of the method. It is found that the para-
metric excitation is able to re-stabilize the equilibrium for any value of the excitation fre-
quencies, except for frequencies close to resonant values, provided a sufficiently large
excitation amplitude is enforced. Results are compared with those provided by a purely
numerical approach grounded on the Floquet theory.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known that when a Hamiltonian system resting at a stable equilibrium position is parametrically excited,
depending on the frequency and on the amplitude of the excitation, it can lose stability, so that oscillations of large ampli-
tude are triggered. However, the converse is also true, i.e. a Hamiltonian system at a (statically) unstable equilibrium point
(i.e. at a divergence point) can be re-stabilized by a suitable parametric excitation! The phenomenon is appealing, since, if
suitable exploited, it could suggest control strategies alternative to that discussed, e.g., in [1,2].

An example of such strategies is offered by the time-periodic control gain (see, e.g. [3,4], where the so-called act-and-wait
control is studied). Here, the gains play the role of time-periodic spring and damper in mechanical systems, and therefore is
closely related to the topic analyzed here. A short overview of various applications of stabilization by vibration, along with
the exposition of the related geometrical mechanisms, can be found in [5].

A famous example of re-stabilization is represented by ‘‘the Indian magic rope trick problem’’ (see [6–8]), for which a ver-
tical rope under self-weight, which would be statically unstable, is instead stable when the lower-end is driven to execute a
vertical harmonic motion at a frequency higher than the resonant value. The phenomenon has been explained in literature
(see, e.g. [8–10]) via the concept of ‘‘effective mechanical stiffness’’ according to which the parametric excitation creates a
‘‘fictitious’’ incremental stiffness which, if of suitable sign, supplies stability to the otherwise unstable system. Such a result
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has been obtained by the method of ‘‘direct separation of motion’’, introduced by Blekhman [11], according to which the
solution is expressed by a superposition of a slow and a fast component.

Recently [12], an alternative justification has been provided in the framework of a Multiple Scale analysis. There, it has
been shown that a zero-frequency forcing term appears in the perturbation equations as a combination of the excitation X
and a non-zero natural frequency x, around the resonant values x;2x;x=2, as well far from all these resonances. Of course,
the sign of this force decides on stability.

On the other hand, while the excitation could have a beneficial effect on the (statically) unstable mode, it could have a
detrimental effect on the otherwise stable modes, via the classical mechanisms described by the Floquet theory (direct or
combination resonances). Therefore, a complete analysis should investigate the possible loss of stability of all the modes.

Ref. [12] was devoted to specifically analyse, in this respect, an upright double pendulum, under over-critical gravitational
forces. There, the authors were able to find lower and upper critical boundaries of stability in a wide frequency range, thus
generalizing previous results obtained in [13,14], where use had been made of a perturbation method combined with the
Floquet multiplier technique. The algorithm used in [12] was not a trivial application of the Multiple Scale Method. Indeed,
it was shown that, according to the resonance to be investigated, integer or fractional power expansions of the state variables
and of time must be used, and parameters properly ordered. Moreover, it was underlined, in dealing with the fractional ser-
ies, that, differently from the usual applications of the method, the complementary solution of the perturbation equations
cannot be disregarded, if inconsistencies have to be avoided.

This paper is aimed to further generalize the results of [12]. A general linear multi-degree-of-freedom Hamiltonian
system, close to a divergence point, is considered, and parametrically excited by an arbitrary frequency X and small-
amplitude d. Several type of resonances are studied, in addition to the non-resonant excitation, namely:
X ¼ xj; 2xj; xj=2; xj þxi; xj �xi where xj; xi are any two (non-zero) natural frequencies. Among these, the combina-
tion resonances of sum of difference type, only occur in systems with at least three d.o.f., being x1 ¼ 0 the frequency asso-
ciated with the buckling mode. Analytical conditions are found for stability of the parametrically excited system, and the
beneficial/detrimental effect of the excitation is discussed. Numerical simulations are carried out on a triple-pendulum,
for which the Multiple Scale solutions are compared with numerical solutions, based on the Floquet theory.

2. Problem position

Let us consider an undamped autonomous n-dof linear system, parametrically excited. The equations of motion, in non-
dimensional form, read:

M€qþ CðpÞ þ dX2 cos XtB
� �

q ¼ 0 ð1Þ

where M ¼MT is the mass matrix, C ¼ CT is the stiffness matrix, depending on a load parameter p;B is the parametric exci-
tation matrix, d the parametric excitation amplitude and X the parametric excitation frequency; dots denote time-
differentiation.

Let us assume that the unexcited system is stable at p < p0 and unstable at p > p0, where p0 is the load critical value.
Therefore, the eigenvalue problem:

C0 �x2
k M

� �
u ¼ 0; ð2Þ

where C0 ¼ Cðp0Þ, admits the eigenfrequencies ð0;x2; . . . ;xnÞ (supposed distinct), with the associated (real) eigenvectors
ðu1;u2; . . . ;unÞ. By defining the modal matrix U ¼ u1;u2; . . . ;un½ �, it results, after normalization, that
UT CU ¼ diag 0;x2

2; . . . ;x2
n

� �
and UT MU ¼ I.

We put CðpÞ ¼ C0 þ DpC1, with the incremental load Dp, and perform the following rescaling: Dp! e2Dp; d! ed, where e
is a perturbation parameter, so that Eq. (1) becomes:

M€qþ C0qþ edX2 cos XtBqþ e2DpC1q ¼ 0: ð3Þ

A steady solution to Eq. (3) will be pursued by the Multiple Scale Method (MSM) [15], by using, when appropriate, integer
power expansions, or adapting fractional power algorithms, similarly to what done in [16,17].

As it is well-known, the MSM works as a reduction method, which contracts the dimension of the original dynamical sys-
tem, by furnishing Amplitude Modulation Equations in the (time-dependent) amplitude of the resonant modes. Goal of the
analysis is to obtain such reduced equations, in order to investigate on stability of the trivial equilibrium position.

3. Multiple scale analysis: integer power expansion

According to the Multiple Scale Method [15], we introduce several time-scales tj ¼ ejt; j ¼ 0;1; . . ., such that

d
dt
¼
X1
k¼0

ekdk;
d2

dt2 ¼
X1
j¼0

X1
k¼0

ekþjdkdj ð4Þ

where dk ¼ @=@tk. Then, we expand the configuration variables in series of integer powers of the perturbation parameter e:
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