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a b s t r a c t

Systems constituted by moving components that make intermittent contacts with each
other can be modelled by a system of ordinary differential equations containing piecewise
linear terms. We consider a soft impact bilinear oscillator for which we obtain bifurcation
diagrams, Lyapunov coefficients, return maps and phase portraits of the response. Besides
Lyapunov coefficients diagrams, bifurcation diagrams are represented in terms of both
non-dimensional time instants of contact (when the mass impacts the obstacle) and of por-
tions of contact duration (the percentage-time interval when the material point is inside
the obstacle) vs. non-dimensional external force frequency (or amplitude). The second kind
of diagrams is needed because the contact duration (or the complementary flight time
duration) are quantities that can easily be measured in an experiment aiming at confirming
the validity of the present model. Lyapunov coefficients are evaluated converting the piece-
wise linear system of ordinary differential equations into a map, the so-called impact map,
where time and velocity corresponding to a given impact are evaluated as functions of time
and velocity corresponding to the previous impact. Thus, the usual methods related to this
last map are used. The trajectories are represented in terms of return maps (all points in
the time-velocity plane involved in the impact events) and phase portraits (the trajec-
tory-itself in the displacement-velocity plane). In the bifurcation diagrams, transition
between different responses is evidenced and a perfect correlation between chaotic (peri-
odic) attractors and positive (negative) values of the maximum Lyapunov coefficient is
found.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Significant research efforts have been spent in the theory and application of nonlinear dynamics for non-smooth systems
[1–6]. Among the wide range of nonlinear dynamical systems, Piecewise Smooth Systems (PSS) play an important role and
can be classified as continuous or discontinuous PSS [5,7]. The most simple discontinuous PSS is the impact oscillator studied
since 1958 for the case of an electronic bell [8] and also investigated in recent theoretical and numerical works, see e.g. [9–
14]. The simplest continuous PSS is the piecewise (or bilinear) oscillator, that is the object of an important work by Shaw and
Holmes [15] and is also recently analyzed in many papers, see e.g. [16,17].

Both hard and soft impacts have been considered. The exact solution of the fundamental periodic motion of a simple
mechanical system with hard impact, attached to a sinusoidally excited primary mass of the system, was derived analytically
by Blazejczyk-Okolewska and Peterka [18]. Blazejczyk-Okolewska et al. [19] determined the regions of periodic motions with
impacts and the stability of periodic solutions of a two-degree-of-freedom mechanical system; impacts between the mass

1007-5704/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cnsns.2009.10.015

* Corresponding author. Tel.: +39 06 44 589 195; fax: +39 06 322 14 49.
E-mail address: giuseppe.rega@uniroma1.it (G. Rega).

Commun Nonlinear Sci Numer Simulat 15 (2010) 2603–2616

Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns

http://dx.doi.org/10.1016/j.cnsns.2009.10.015
mailto:giuseppe.rega@uniroma1.it
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


and the rigid basis were described by a coefficient of restitution. Peterka and Tondl [20] dealt with the analysis, via numerical
simulations, of the motion of one degree-of-freedom mechanical system with soft impact; the restoration force is character-
ized by a triangle hysteresis loop and the external excitation is an harmonic force. Subharmonic impact motions are char-
acterized in a subregion of the plane of dimensionless excitation frequency and static clearance, showing the regions of
different regimes of impact motions.

Recently, various types of soft impacting systems have been addressed by Ma et al. [21] via experimental and/or numer-
ical approaches, in the framework of a two-dimensional mapping analysis of the relevant dynamics. Among authors using
sophisticated analytical mappings in the study of piecewise systems we mention Luo [22] and Pavlovskaia and Wiercigroch
[23].

In this work, we also deal with a soft impact bilinear oscillator which, besides its own interest, also aims at representing a
Single Degree Of Freedom (SDOF) model of the first mode of vibration of an impacted cantilever beam of uniform mass,
experimentally studied in [11]. The target is to find the conditions for which non-trivial impacting chaotic and periodic mo-
tions do occur. To this aim, we use impact maps, whose limitations for studying grazing and low-velocity impacts do not
come into play. In order to grossly distinguish between a periodic and a chaotic trajectory, we use Lyapunov coefficients.
Lyapunov numbers (exponents or coefficients) measure the average divergence of nearby trajectories. A chaotic system is
generally defined under the condition that the associated largest Lyapunov coefficient is positive [24].

For dynamical systems described by smooth differential equations and for discrete maps, the calculation of Lyapunov
coefficients is well developed [25]. For non-smooth dynamical systems we have the work of Müller [26] that generalizes
classical techniques for smooth dynamical systems, but also the papers of Stefanski [27], who uses chaos synchroniza-
tion, and Galvanetto [28], who uses the definition of a smooth transcendental map. This map is defined in such a way
the event of a certain discontinuity in the solution of the non-smooth dynamical system is given in terms of the fore-
going discontinuity and it is also used by de Souza and Caldas [13]. In [13], the authors apply the usual method devel-
oped in [25] for discrete maps to this new transcendental map. They apply this idea to the case of an impact oscillator
and to the impact pair system. A novelty of the present work lies in the application of the technique used by de Souza
and Caldas to the case of an impacting bilinear oscillator. We remark that the tricky point of this application is that the
transcendental maps to be defined are two: one map for each smooth region of the problem, namely the contact and the
flight regions. Moreover, we study the stability of the trajectories by using the Jacobians in numerical form calculated at
the time instants of the attachment and detachment of the material point at the obstacle, as well as the Lyapunov
coefficients.

This means that it is not possible to analyze the stability of a period one point through the evaluation of its eigenvalues,
see [14], without an empirical assumption on the periods of such trajectories, see e.g. [15]. This is the reason why we will
evaluate numerically the stability of the trajectories by using a proper form of the Jacobian.

In order to pursue the analogy with an impacted cantilever beam, not only the springs have two different rigidities in the
two smooth regions of the problem, but also the dampers have different attenuation coefficients. The spring and the damper
of the system simulate the cantilever beam; the spring and the damper modelling the obstacle have larger values of rigidity
(in order to simulate the hardness of the obstacle) and attenuation coefficient (in order to simulate the energy dispersion
during the impact event). We remark that, in the impact oscillator model, the hardness of the obstacle and the energy dis-
persion of the impact event are modelled, respectively, by the fact that the latter occurs instantaneously and by a single res-
titution coefficient lower than one.

The paper is organized as follows. In Section 2 we present the dimensional and non-dimensional sets of piecewise ordin-
ary differential equations that we treat in the rest of the paper. In Section 3 we describe the iterative solution method and
derive the transcendental maps and their Jacobians. In Section 4 the Lyapunov coefficients are described along with the
numerical method for their computation. In Section 5 we present a detailed parametric analysis of system non-trivial im-
pact-response through return maps and bifurcation diagrams, and characterize some relevant transition scenarios. Our con-
clusions end the paper in Section 6.

2. System description

2.1. Dimensional equations

The piecewise linear oscillator considered in this paper is a mass-spring-damper system governed by the following ordin-
ary differential equation,

m€xþ cðxÞ _xþ k ðxÞ ¼ F0 sinðx tÞ; ð1Þ

where x is the displacement, from the unstressed configuration of the spring with rigidity ks, of a material point with mass m
at time t, the dot denotes the derivative with respect to time, F0 sinðx tÞ is the external sinusoidal force; cðxÞ is the attenu-
ation coefficient and kðxÞ is the opposite of the force exerted by the system springs. In order to simulate the occurrence of the
impact event, cðxÞ and kðxÞ are two piecewise functions of x defined as follows,

kðxÞ ¼
ksx; x < d;

ksxþ koðx� dÞ; x P d;

�
ð2Þ
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