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shrinking sheet. The solutions with seven typical velocity profiles are derived based on a
general closed form expression. Such flow is usually not self-similar and the solution can
only be implemented when the mass transfer at the wall is prescribed and determined
by the moving velocity of the wall. The characteristics of the flows with the typical velocity
distributions are discussed and compared with previous similarity solutions. The flow is
observed to have quite different behavior from that of the self-similar flow reported in
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Shrinking sheet the literature and the results demonstrate distinctive momentum and energy transport
Navier-Stokes equations characteristics. Some plots of the stream functions are also illustrated to show the differ-
Analytical solution ence in flow field between the shrinking sheet and the stretching sheet. An integral

approach to solve boundary layer flow over a shrinking or stretching sheet with uncoupled
arbitrary surface velocity and wall mass transfer velocity is outlined and the effectiveness
of this approach is discussed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The flow over a continuously stretching surface can be found in many industrial processes [1-3]. This type of flow was
firstly investigated by Sakiadis over a continuously stretching surface with a constant speed [4,5]. Numerous studies have
been conducted afterward to explore the flow characteristics for various applications [6-18]. Most of the solutions ,except
the one by Crane [7], obtained in the previous works, are based on the boundary layer assumption and are not exact solutions
of the Navier-Stokes (NS) equations [19]. Furthermore, various forms of solutions have been proposed and multiple solution
branches for both impermeable and permeable stretching sheets were also discovered for some cases [17,18]. Kumaran and
Ramamaiah presented a close-form solution to this flow when the stretching velocity of the wall is parabolic [20]. Recently,
the solution to the flow induced by continuous stretch of the surfaces, originally presented by Crane [7], has been generalized
for the walls with an arbitrary shrinking velocity [21]. This work is an extension to the study by Kumaran and Ramanaiah
[20] and provides solution to an arbitrarily high degree of polynomial stretching. Miklavcic and Wang [22] initiated the study
on the flow over a shrinking sheet and presented exact solutions of the NS equations. The shrinking sheet problem has been
receiving much more attention in the literature since then and the work on the flow configurations have been extended to
power-law shrinking velocity and to various fluids [23-29]. All the previous work has shown that the mass transfer from a
permeable wall is required in order to maintain the flow over a shrinking sheet. However, the analytical solution to the flow
over a shrinking sheet with an arbitrary surface velocity has not reported. The objective of this paper is to extend the shrink-
ing sheet problem to any arbitrary shrinking velocity. The solution will be presented in a closed form and different velocity
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distributions at the wall, including constant, linear, quadratic, power-law, exponential, periodic and bilinear velocity, will be
demonstrated as examples of this solution to show the flow characteristics. The heat transfer aspect of the problem with
boundary layer assumption will be discussed as well.

2. Mathematical formulation and solutions
2.1. Flow configuration

Consider a steady, two-dimensional laminar flow over a continuously shrinking sheet in a quiescent fluid. The sheet
shrinking velocity is u,, = —u,(x) with u,,(x) being positive for all values of x and the mass transfer velocity at the wall is
Vw = Vyw(X), which will be determined later. The x-axis runs along the shrinking surface in a direction opposite to the sheet
motion and the y-axis is perpendicular to the shrinking surface. The governing momentum and energy equations based on
the boundary layer assumption read [21]
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with the boundary conditions (BCs)
u(x,0) = —uy(x), v(x,0)=ovy(x), ux,o00)=0, (4a—c)
and
T(x,0) =Tw(x), T(x,00) =Ty (5a—b)

where u and v are the velocity components in the x and y directions respectively, v is the kinematic viscosity, p is the fluid
pressure, p is the fluid density, T is the fluid temperature, o is the thermal diffusivity of the fluid, and subscript w denotes the
conditions at the wall. In the following sections, a closed form solution will be given first and some examples of various
velocity distributions will be presented.

2.2. Closed form solutions
The governing Eqgs. (1)-(3) can be transformed into dimensionless forms by using a characteristic velocity and a length

scale. By defining U(X,Y) = u(x,y)/Uo, V(X,Y) = v(x,y)/Us, P(X,Y) = p(x,y) /<pU(2)>, X =x/L,Y = y/L with L = v/Up, the
dimensionless momentum equations become
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with the boundary conditions (BCs)
UX,0)=-Uy(X), V(X,0)=V,(X), UX,oc0)=0. (9a—c)

U

and
T(X,0)=Ty(X), T(X,00)=Tx (10a—Db)

where Pr = v/a is the Prandtl number and Uy is a constant characteristic velocity.
The momentum and the continuity equations admit the following solutions:

UX,Y) = Uy (X)e (11)
and

VoY) = —p— 5 LeEe

The energy equation has a particular solution as

T(X,Y) = Ty + T, [Un(X)]" e PP (13)
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