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a b s t r a c t

In this paper, a new application of generalized differential transform method (GDTM) has
been used for solving time-fractional reaction–diffusion equations. To illustrate the reli-
ability of the method, some examples are provided.

Crown Copyright � 2010 Published by Elsevier B.V. All rights reserved.

1. Introduction

The nonlinear reaction–diffusion equations have found numerous applications in pattern formation in many branches of
biology, chemistry, and physics [1–4]. Reaction–diffusion (RD) equations have also applied to numerous other problems which
appeal in the targeted scientific community [5–18]. For example, the RD equations are employed to describe the CO oxidation on
Pt(110) [10], the study of Ca2+ waves on Xenopus oocytes [14], and the study of reentry in heart tissue [17,18].

There has been a wide variety of numerical methods, e.g., finite difference techniques, finite element methods, spectral tech-
niques, adaptive and non-adaptive algorithms, etc., which have been developed for its numerical solution [19,20]. Amongst the
most recent numerical techniques, it is worth mentioning on-standard finite difference methods [21,22], hybrid boundary inte-
gral procedures [23], the nodal integral scheme [24] and piecewise hybrid analytical numerical algorithms [25].

In recent years, there has been a great deal of interest in fractional reaction–diffusion (FRD) systems [26–35] which from one
side exhibit self-organization phenomena and from the other side introduce a new parameter to these systems, which is a frac-
tional derivative index, and it gives a greater degree of freedom for diversity of self-organization phenomena. At the same time,
the process of analyzing such FRD systems is much more complicated from the analytical and numerical point of view.

Trapping reactions between molecules embedded in biological samples and disordered materials are usually handicapped
by the porous and statistical fractal structure of these media [36]. In some cases this gives rise to subdiffusion the particles,
i.e., the mean square displacement hr2ðtÞi of the particles from the original starting site is no longer linear on time, but ver-
ifies a generalized Fick’s second law:

hr2ðtÞi � 2Ka

Cð1þ aÞ t
a ð1:1Þ

where 0 < a < 1 is the (anomalous) diffusion exponent and Ka is the diffusion coefficient. There are many other instances in
which subdiffusion processes appear [37–44].
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In this paper, we present a solution of a more general model of reaction–diffusion equations:

oau
ota
¼ D

o2u
ox2 þ f ðuÞ 0 < a 6 1 t > 0 x 2 R ð1:2Þ

where D is the diffusion coefficient and f ðuÞ is a nonlinear function representing reaction kinetics. It is interesting to observe
that for f ðuÞ ¼ 6uð1� uÞ, Eq. (1.2) reduces to the time-fractional Fisher equation which was originally proposed by Fisher
[45] as a model for the spatial and temporal propagation of a virile gene in an infinite medium. It is encountered in chemical
kinetics [46], flame propagation [47], auto catalytic chemical reaction [48], nuclear reactor theory [49], neurophysiology
[50], and branching Brownian motion process [51]. Recently, Fisher equation combines diffusion with logistic non-linearity
and concludes problems such as nonlinear evolution of a population in a one-dimensional habitat. If we set
f ðuÞ ¼ uð1� uÞðu� lÞ, it gives rise to the time-fractional Fitzhugh–Nagumo equation, which is an important nonlinear reac-
tion–diffusion equation and applied to model the transmission of nerve impulses [52,53], also used in biology and the area of
population genetics in circuit theory [54]. When l ¼ �1, the Fitzhugh–Nagumo equation reduces to the real Newell–White-
head equation.

We use the generalized differential transform method (GDTM), for solving nonlinear fractional reaction–diffusion partial
differential equations, which was presented by [55–57]. This method is based on differential transform method (DTM) [58–
61], The DTM introduces a promising approach for many applications in various domains of science. By using the DTM, we
obtain a series solution, actually a truncated series solution. This series solution does not exhibit the real behaviors of the
problem but gives a good approximation to the true solution in a very small region. Odibat et al. [62] proposed a reliable
algorithm of the DTM. The new algorithm accelerates the convergence of the series solution over a large region and improve
the accuracy of the DTM. The validity of the modified technique is varied through illustrative examples of Lotka-Volterra,
Chen and Lorenz systems. The GDTM method also based on generalized Taylor’s formula [63], and Caputo fractional deriv-
atives, which are defined as [64]:

Daf ðxÞ ¼ Im�aDmf ðxÞ ¼ 1
Cðm� aÞ

Z x

0
ðx� tÞm�aþ1f ðmÞðtÞdt

For m� 1 < a 6 m; m 2 N; x > 0; for the Caputo derivative we have:

DaC ¼ 0; ðC is a constantÞ; Datn ¼
0; ðn 6 a� 1Þ
Cðnþ1Þ

Cðn�aþ1Þ t
n�a; ðn > a� 1Þ

( )

For m being the smallest integer that exceeds a, the Caputo fractional derivatives of order a > 0 are defined as:

Dauðx; tÞ ¼ oauðx; tÞ
ota

¼
1

Cðm�aÞ
R t

0ðt � sÞm�aþ1 omuðx;sÞ
osm ds; for m� 1 < a < m

omuðx;tÞ
otm ; for a ¼ m 2 N

8<
:

9=
;

2. Analysis of the method

The basic definitions and fundamental operations of generalized differential transform method are defined in [55–57] as
follows:

Definition 2.1. The generalized differential transform of the function uðx; yÞ is given as follows:

Ua;bðk;hÞ ¼
1

Cðakþ 1ÞCðbhþ 1Þ Da
x0

� �k
Db

y0

� �h
� �

ðx0 ;y0Þ
ð2:1Þ

where Da
x0

� �k
¼ Da

x0
� Da

x0
� � �Da

x0
.

Definition 2.2. The generalized differential inverse transform of Ua;bðk;hÞ is defined as follows:

uðx; yÞ ¼
X1
k¼0

X1
h¼0

Ua;bðk;hÞðx� x0Þkaðy� y0Þ
hb ð2:2Þ

The fundamental operations of generalized differential transform method are listed in Table 1: (see [55–57]).

3. Applications

In this section, we will investigate the solutions of two examples of the reaction–diffusion equations.

Example 1. Let us consider Eq. (1.2) with f ðuÞ ¼ 6uð1� uÞ, then we have the time-fractional Fisher equation

Da
t u ¼ D2

x uþ 6uð1� uÞ; 0 < a 6 1; x 2 R; t > 0 ð3:1Þ
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