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a b s t r a c t

A practical and easy control of the authenticity of organic sugarcane samples based on the use of
machine-learning algorithms and trace elements determination by inductively coupled plasma mass
spectrometry is proposed. Reference ranges for 32 chemical elements in 22 samples of sugarcane (13
organic and 9 non organic) were established and then two algorithms, Naive Bayes (NB) and Random
Forest (RF), were evaluated to classify the samples. Accurate results (>90%) were obtained when using
all variables (i.e., 32 elements). However, accuracy was improved (95.4% for NB) when only eight
minerals (Rb, U, Al, Sr, Dy, Nb, Ta, Mo), chosen by a feature selection algorithm, were employed. Thus,
the use of a fingerprint based on trace element levels associated with classification machine learning
algorithms may be used as a simple alternative for authenticity evaluation of organic sugarcane samples.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Sugarcane is one of the most consumed food commodities
worldwide. It is grown primarily in the tropics and subtropics,
and Brazil is by far the world’s largest producer, accounting for
one third of world production. Increasing world demands for
organic food products have stimulated organic sugarcane
production by several producers.

‘‘Organic’’ food indicates a food has been produced according to
specific rules, which forbid the use of pesticides and inorganic
fertilizers, and is certified by a constituted agency. Certification
requires a series of steps that lead to a considerable increase of
the value of the product. Efficient control of authenticity of organic
food products is, however, still considered challenging since
conventional and organic food products cannot be distinguished
visually meaning specific analysis is mandatory. Methodologies
for the authentication of organic food are a matter of great interest
(Capuano, Boerrigter-Eenling, Van der Veer, Van Ruth, 2013; Kahl

et al., 2012). Considering the significant differences between
organic and conventional sugarcane cultivation systems, a distin-
guishable pattern in mineral concentrations should also exist
(Yadav, Jain, & Rai, 2010). Based on this, previously, major and
trace element profiling has been used to distinguish between
organic and conventionally cultivated barley, coffee, fava bean,
potatoes, tomato and wheat samples (Fernandes, Tagliaferro,
Azevedo, & Bode, 2002; Kelly & Bateman, 2010; Laursen et al.,
2011). Previous studies have also demonstrated that nitrogen iso-
tope composition may be used to distinguish between crops grown
under conventional and organic conditions (Choi, Ro, & Lee, 2003;
Kelly & Bateman, 2010). However, the time of application and the
chemical form of synthetic fertilizer are important in determining
how fertilizer d15N impacts crop d15N (Kelly & Bateman, 2010).

Trace elements can easily be determined in sugarcane samples
with the use of atomic spectrometry techniques including atomic
absorption spectrometry (AAS) (Segura-Muñoz et al., 2006), atomic
emission spectrometry with inductively coupled plasma (ICP-OES)
(Mohamed, 1999) or inductively coupled plasma mass spectrome-
try (ICP-MS) (Nardi et al., 2009). However, ICP-MS has numerous
distinct advantages compared with AAS or ICP-OES, including
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measurement of multiple elements coupled with very low detec-
tion limits (Parsons & Barbosa, 2007). Moreover, it offers a wider
linear dynamic range which allows the determination of dozens
of chemical elements in the same sample injection (Parsons &
Barbosa, 2007). ICP-MS can also be considered a high throughput
technique enabling large quantities of data to be generated rapidly
(Kelly & Bateman, 2010; Parsons & Barbosa, 2007). However, this
analytical approach also demands proper statistical treatment of
data.

In the recent years, advances in chemometric techniques in
quality control of food products have gained considerable attention
from groups worldwide (Arvanitoyannis & Vlachos, 2009; Barbosa
et al., 2014; Drivelos & Georgiou, 2012; Fabani, Raverac, &
Wunderlin, 2013). In this context, several machine-learning tech-
niques have been proposed such as Support Vector Machine
(SVM), Multilayer Perceptron (MLP) and Randon Forest (RF)
(Aguiar et al., 2012; Alcazar, Jurado, Palacios-Morillo, de Pablos,
& Martín, 2012; Batista et al., 2012; Bereton & Loyd, 2010;
Jurado, Alcázar, Palacios-Morillo, & de Pablos, 2012). These data
mining tools are supervised learning models with associated learn-
ing algorithms that analyze data and recognize patterns, and are
used for classification and regression analysis (Koitsiantis,
Zaharakis, & Pintelas, 2006). They can be used to identify the group
to which a new sample belongs after a preliminary group classifi-
cation. (Batista et al., 2012) Classification is made, for instance,
after analyzing chemical components in a matrix and establishing
a pattern (i.e., a chemical fingerprint). However, to our knowledge,
these tools have not been used to control the quality and authen-
ticity of organic food products so far.

Thus, the aim of this study was to apply the machine-learning
techniques Naive Bayes (NB) and Random Forest (RF) to classify
organic and conventional sugarcane samples based on a multi-
mineral composition database obtained using inductively coupled
plasma mass spectrometry, which might be used to control the
authenticity of organic sugarcane samples.

2. Material and methods

2.1. Instruments

The determination of trace elements in sugarcane samples was
carried out by using an ICP-MS (ELAN DRCII, PerkinElmer, CT, USA)
with high-purity argon (99.999%, White Martins, Brazil). The
instrumental parameters and optimized conditions are provided
by Nardi et al. (2009).

2.2. Reagents

All reagents used were of analytical-reagent grade except for
HNO3, which was previously purified in a quartz sub-boiling still

(Kürner Analysentechnik). High purity deionized water (resistivity
18.2 MX cm) obtained using a Milli-Q water purification system
(Millipore, Bedford, MA, USA) was used. Multi-element
(10 mg L�1) and rhodium (1000 mg L�1) solutions were obtained
from PerkinElmer (Shelton, CT, USA).

2.3. Sampling and analytical procedures

Certified organic sugarcane (n = 13) and non-organic sugarcane
(n = 9) samples from different brands were obtained in supermar-
kets from the São Paulo state (southeast region of Brazil). To avoid
differences in metal levels due to geography variation between
samples, it was certified that all samples were originated from
sugarcane plants cultivated in the São Paulo state region. Then, five
grams of each sample was put in propylene metal-free Falcon�

tubes (Becton Dickinson) before analysis. The method proposed
by Nardi et al. (2009) was used with some modifications to deter-
mine trace elements in sugarcane samples. Briefly, samples (0.10 g)
were weighed accurately into a PFA digestion vessel, and 5 ml of
nitric acid 14 mol/L + 2 mL of 30% (v/v) H2O2 were added. The
bomb was placed in a microwave, and decomposition carried out
according to the following heating program: (a) step 1 (power
700 W, 4.5 min, 160 �C); (b) step 2 (power 0 W, 0.5 min, 160 �C);
(c) step 3 (power 800 W, 5.0 min, 230 �C); (d) step 4 (power 0 W,
20 min, 35 �C) (Nardi et al., 2009).

After that, the samples were left to cool and the volume made
up to 50 mL with Milli-Q water. Then, rhodium was added as inter-
nal standard to a final concentration of 10 lg/L. Using ICP-MS, 32
chemical elements (Al, Be, Bi, Ce, Co, Dy, Er, Eu, Gd, Ge, La, Mn,
Mo, Nb, Nd, Ni, Pb, Pr, Rb, Se, Sm, Sr, Ta, Tb, Th, Ti, Tl, U, Y, Yb, W
and Zr) were determined.

2.4. Analytical quality control

The quality control of data was guaranteed by analyzing NIST
Standard Reference material NIST SRM 1515 apple leaves, NIST
1547 peach leaves, and NIST 1515 Wheat Flour acquired from
the National Institute of Standards and Technology (NIST, USA).
Reference samples were analyzed before and after sample
determinations. Values were in good agreement with reference
values.

2.5. Chemometric studies

Machine learning can be defined as methods from mathematics,
computer science and statistics using data collected to make
accurate predictions or classification.

In supervised learning, the learning scheme is presented with a
set of classified examples from which it can classify unseen exam-
ples. Instances in a dataset are characterized by values (in our case,

Table 1
Descriptive statistical analysis of the concentration of 32 elements in conventional Brazilian sugarcane samples.

Analyte Pba Nia Mna Sea Coa Rba Ua Alb

Mean ± SD 16.1 ± 7.3 15.3 ± 4.5 206 ± 108 48 ± 14.9 1.6 ± 2.4 23.7 ± 11.7 4.2 ± 1.7 0.77 ± 0.36
(min–max) 8.4–36 10.2–29.1 88–511 20.1–74 0.4–8.5 9.8–77 1.0–5.9 0.42–2.0

Bea Bia Sra Tla Cea Dya Era Eua

Mean ± SD 2.2 ± 1.3 8.9 ± 12.0 265 ± 84 0.19 ± 0.12 10.4 ± 4.7 1.3 ± 0.6 0.87 ± 0.32 0.50 ± 0.17
(min–max) 0.1–4.5 0.8–57.5 39–595 0.13–0.54 2.0–14.5 0.3–2.0 0.14–1.20 0.13–0.72

Gda Laa Nda Pra Sma Tba Tha Ya

Mean ± SD 2.1 ± 1.0 5.4 ± 2.8 4.7 ± 2.4 1.3 ± 0.7 1.8 ± 1.8 0.37 ± 0.07 11.5 ± 5.7 3.5 ± 1.7
(min–max) 0.3–3.5 0.9–8.3 0.6–7.5 0.3–3.2 0.1–8.1 0.13–0.40 0.9–18.5 0.5–5.5

Yba Gea Nba Taa Tia Wa Zra Moa

Mean ± SD 0.77 ± 0.41 0.52 ± 0.23 4.3 ± 1.8 0.58 ± 0.15 134 ± 98 1.6 ± 0.3 13.4 ± 4.6 1.8 ± 0.6
(min–max) 0.13–1.73 0.13–1.08 1.0–6.4 0.13–0.94 24.5–574 1.0–2.4 3.1–18.2 0.9–3.4

Notes: a: elements in ng g�1; b: elements in lg g�1; SD: standard deviation.
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