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a b s t r a c t

In this paper, travelling wave solutions for the nonlinear dispersion Drinfel’d–Sokolov sys-
tem (called Dðm;nÞ system) are studied by using the Weierstrass elliptic function method.
As a result, more new exact travelling wave solutions to the Dðm;nÞ system are obtained
including not only all the known solutions found by Xie and Yan but also other more gen-
eral solutions for different parameters m;n. Moreover, it is also shown that the Dðm;1Þ sys-
tem with linear dispersion possess compacton and solitary pattern solutions. Besides that,
it should be pointed out that the approach is direct and easily carried out without the aid of
mathematical software if compared with other traditional methods. We believe that the
method can be widely applied to other similar types of nonlinear partial differential equa-
tions (PDEs) or systems in mathematical physics.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that investigating the exact travelling wave solutions to nonlinear evolution equations play an important
role in the study of nonlinear physical phenomena. In order to obtain the exact solutions, a number of methods have been
proposed, such as the homogeneous balance method [1], the hyperbolic function expansion method [2], Jacobi elliptic func-
tion method [3] and F-expansion method [4], homotopy analysis method [5,6], the bifurcation theory method of dynamical
systems [7,8], Weierstrass elliptic function method [9]. Among these methods, Weierstrass elliptic function method is a
powerful mathematic tool to solve nonlinear evolution equations. By using this method, many kinds of important nonlinear
evolution equations have been solved successfully [10,11].

The usual Drinfel’d–Sokolov system reads

ut þ ðv2Þx ¼ 0;
v t þ avxxx þ buxv þ cuvx ¼ 0:

(
ð1Þ

where a; b; c are constants, this system is regarded as an example of a system of nonlinear equations possessing Lax pairs of a
special form [12]. In [13], Wang gave its recursion, Hamiltonian, symplectric and cosymplectric operators and roots of its
symmetries and scaling symmetry.
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The generalized Drinfel’d–Sokolov system reads

ut þ ðvmÞx ¼ 0;
v t þ avxxx þ buxv þ cuvx ¼ 0:

�
ð2Þ

By using the tanh method and the sine–cosine method, Wazwaz [14] obtained some exact travelling wave solutions with
compact and noncompact structures of Eq. (2).

In this paper, we shall consider the travelling wave solutions of the following nonlinear dispersion Drinfel’d–Sokolov
(simply called Dðm;nÞ) system

ut þ ðvmÞx ¼ 0;
v t þ aðvnÞxxx þ buxv þ cuvx ¼ 0:

�
ð3Þ

By using some transformations, Xie and Yan [15] obtained some types of exact travelling wave solutions to Eq. (3), which
include compactons, solitons, solitary patterns and periodic solutions.

The objective of this paper is to further investigate the travelling wave solutions of Dðm;nÞ Eq. (3) systematically, by
applying the Weierstrass elliptic function method. As a consequence, a new set of exact travelling wave solutions has been
obtained, which is more comprehensive and includes all the results described in [15] as special cases. Similar to Xie and Yan’s
results [15], our results also show that the Dðm;1Þ system with linear dispersion possess compacton and solitary pattern
solutions.

The rest of this paper is organized as follows. In Section 2, we first outline the Weierstrass elliptic function method which
will be used in the next section. In Section 3, we give some general and particular travelling wave solutions of Eq. (3). Finally,
some conclusions are given in Section 4.

2. Weierstrass elliptic functions

Let us consider the following nonlinear differential equation

d/
dt

� �2

¼ a0/
4 þ 4a1/

3 þ 6a2/
2 þ 4a3/þ a4 � f ð/Þ; ð4Þ

As is well-known [16,17] that the solutions /ðtÞ of (4) can be expressed in terms of elliptic functions }. It reads as

/ ¼ /0 þ
1
4

f 0ð/0Þ }ðt; g2; g3Þ �
1

24
f 00ð/0Þ

� ��1

; ð5Þ

where the primes denote differentiation with respect to / and /0 is a simple root of f ð/Þ.
The invariants g2; g3 of elliptic functions }ðt; g2; g3Þ are related to the coefficients of f ð/Þ by [18]

g2 ¼ a0a4 � 4a1a3 þ 3a2
2; ð6Þ

g3 ¼ a0a2a4 þ 2a1a2a3 � a3
2 � a0a2

3 � a2
1a4; ð7Þ

When g2 and g3 are real and the discriminant

D ¼ g3
2 � 27g2

3 ð8Þ

is positive, negative or zero, we have different behavior of }ðtÞ. The conditions [9]

D–0 or D ¼ 0; g2 > 0; g3 > 0; ð9Þ

lead to periodic solutions, whereas the conditions

D ¼ 0; g2 P 0; g3 6 0; ð10Þ

lead to solitary wave solutions.
If D ¼ 0, then }ðt; g2; g3Þ degenerates into trigonometric or hyperbolic functions [19]. Thus, periodic solutions according to

Eq. (5) are determined by

/ðtÞ ¼ /0 þ
f 0ð/0Þ

4 � e1
2 �

f 00 ð/0Þ
24 þ 3

2 e1csc2
ffiffiffiffiffiffiffiffi
3
2 e1

q
t

� �h i ; D ¼ 0; g3 > 0; ð11Þ

and solitary wave solutions by

/ðtÞ ¼ /0 þ
f 0ð/0Þ

4½e1 � f 00ð/0Þ
24 þ 3e1csch2ð

ffiffiffiffiffiffiffiffi
3e1
p

tÞ�
; D ¼ 0; g3 < 0; ð12Þ

where e1 ¼
ffiffiffiffiffiffiffiffi
jg3j3

p
in Eq. (11) and e1 ¼ 1

2

ffiffiffiffiffiffiffiffi
jg3j3

p
in Eq. (12).
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