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a b s t r a c t

In this paper, by using the bifurcation theory of dynamical systems for a class of nonlinear
fourth order variant of a generalized Camassa–Holm equation, the existence of solitary
wave solutions, breaking bounded wave solutions, compacton solutions and non-smooth
periodic wave solutions are obtained. Under different parametric conditions, various suffi-
cient conditions to guarantee the existence of the above solutions are given. Some exact
explicit parametric representations of the above waves are determined.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

In our recent paper, by using sine–cosine method, we investigated the nonlinear dispersive variants CH(�n, �n, �m) of
the generalized Camassa–Holm equation [1] (simply called GCH(�n, �n, �m))

utt ¼ ðauþ bu�n þ du�mÞxx þ kðu�nÞxxtt; ð1:1Þ

where a; k > 0; bd – 0; m > n P 1. It is shown that this class gives compactons, conventional solitons, solitary patterns and
periodic solutions. It is also found that the qualitative change in the physical structure of solutions depends mainly on the
exponent of the wave function uðx; tÞ, positive or negative, and on the coefficient of ðu�nÞ00 as well. It is very important to
consider the dynamical bifurcation behavior for the travelling wave solutions of (1.1). There are some interesting problems:
Does an exact travelling wave solution obtained by the computer algebraic method really satisfy the given travelling equa-
tion? What is the dynamical behavior of the known exact travelling wave solutions? How do the travelling wave solutions
depend on the parameters of the system? Are there the dynamics of the so-called compacton solutions for (1.1)? In this pa-
per, we shall study all travelling wave solutions in the parameter space of this system. Let uðx; tÞ ¼ /ðx� ctÞ ¼ /ðnÞ, where c
is the wave speed. Then (1.1) becomes to

c2/00 ¼ ða/þ b/�n þ d/�mÞ00 þ c2kð/�nÞð4Þ; ð1:2Þ

where ‘‘0” is the derivative with respect to n. Integrating (1.2) twice and setting two integration constants as zero, we have

q/mþ1 þ p/m�n þ 1þ r½nðnþ 1Þ/m�n�2ð/0Þ2 � n/m�n�1/00� ¼ 0; ð1:3Þ
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where q ¼ a�c2

d ; p ¼ b
d ; r ¼ c2k

d . Eq. (1.3) is equivalent to the two-dimensional systems as follows

d/
dn
¼ y;

dy
dn
¼ 1þ p/m�n þ q/mþ1 þ rnðnþ 1Þ/m�n�2y2

rn/m�n�1 ð1:4Þ

with the first integral for n > 1

Hð/; yÞ ¼ rn

2/2ðnþ1Þ y2 þ q
n� 1

/�nþ1 þ p
2n

/�2n þ 1
ðmþ nÞ/

�m�n
� �

¼ h ð1:5Þ

and with the first integral for n ¼ 1

H1ð/; yÞ ¼
r

2/4 y2 � q ln /� p
2

/�2 � 1
ðmþ 1Þ/

�m�1
� �

¼ h: ð1:6Þ

System (1.4) is a 5-parameter planar dynamical system depending on the parameter group ðm;n; p; q; rÞ. For different m;n
and a fixed r, we shall investigate the bifurcations of phase portraits of (1.4) in the phase plane ð/; yÞ as the parameters
p; q are changed. Here we are considering a physical model where only bounded travelling waves are meaningful. So we only
pay attention to the bounded solutions of (1.4).

Suppose that /ðnÞ is a continuous solution of (1.4) for n 2 ð�1;1Þ and limn!1/ðnÞ ¼ a; limn!�1/ðnÞ ¼ b. Recall that (i)
/ðx; tÞ is called a solitary wave solution if a ¼ b; (ii) /ðx; tÞ is called a kink or anti-kink solution if a – b. Usually, a solitary
wave solution of (1.1) corresponds to a homoclinic orbit of (1.4); a kink (or anti-kink) wave solution (1.1) corresponds to a
heteroclinic orbit (or the so-called connecting orbit) of (1.4). Similarly, a periodic orbit of (1.4) corresponds to a periodically
travelling wave solution of (1.1). Thus, to investigate all possible bifurcations of solitary waves and periodic waves of (1.1),
we need to find all periodic annuli and homoclinic orbits of (1.4), which depend on the system parameters. The bifurcation
theory of dynamical systems (see [2,3]) plays an important role in our study.

We notice that the right hand of the second equation in (1.4) is not continuous when / ¼ 0. In other words, on the above
straight line of the phase plane ð/; yÞ;/00n has no definition. It implies that the smooth system (1.1) sometimes has non-smooth
travelling wave solutions. This phenomenon has been studied by some authors (see [4–10]). We claim that the existence of a
singular straight line for a travelling wave equation is the original reason why travelling waves lose their smoothness.

The paper is organized as follows. In Section 2, we discuss bifurcations of phase portraits of (1.4), where explicit paramet-
ric conditions will be derived. In Section 3, some explicit parametric representations of the bounded travelling wave solu-
tions are given. In Section 4, the existence of smooth solitary wave solutions, kink or anti-kink wave solutions,
compacton solutions and non-smooth periodic wave solutions of (1.4) are discussed.

2. Bifurcations of phase portraits of (1.4)

In this section, we study all possible periodic annuluses defined by the vector fields of (1.4) when the parameters p; q are
varied.

Let dn ¼ rn/m�n�1df. Then, except on the straight lines / ¼ 0, the system (1.4) has the same topological phase portraits as
the following system

d/
df
¼ rn/m�n�1y;

dy
df
¼ 1þ p/m�n þ q/mþ1 þ rnðnþ 1Þ/m�n�2y2: ð2:1Þ

Now, the straight lines / ¼ 0 is an integral invariant straight line of (2.1).
Denote that

f ð/Þ ¼ 1þ p/m�n þ q/mþ1; f 0ð/Þ ¼ /m�n�1½pðm� nÞ þ qðmþ 1Þ/nþ1�: ð2:2Þ

For n ¼ 2l;m ¼ 2m1;m1 > l; l;m1 2 Zþ, when / ¼ /0 ¼ � pðm�nÞ
qðmþ1Þ

h i 1
nþ1
; f 0ð/0Þ ¼ 0. We have f ð/0Þ ¼ 1þ p � pðm�nÞ

qðmþ1Þ

h im�n
nþ1þ

q � pðm�nÞ
qðmþ1Þ

h imþ1
nþ1

, which imply the relations in the ðp; qÞ-parameter plane

La : q ¼ m� n
mþ 1

ð�pÞ
mþ1
m�n

nþ 1
mþ 1

� �nþ1
m�n

; p < 0; q > 0:

Lb : q ¼ �m� n
mþ 1

ð�pÞ
mþ1
m�n

2m� nþ 1
mþ 1

� �nþ1
m�n

; p < 0; q < 0:

For n ¼ 2l;m ¼ 2m1 þ 1;m1 P l; l;m1 2 Zþ, when / ¼ /0 ¼ � pðm�nÞ
qðmþ1Þ

h i 1
nþ1
; f 0ð/0Þ ¼ 0. We have f ð/0Þ ¼ 1þ p � pðm�nÞ

qðmþ1Þ

h im�n
nþ1þ

q � pðm�nÞ
qðmþ1Þ

h imþ1
nþ1

, which imply the relations in the ðp; qÞ�parameter plane
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