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a b s t r a c t

In this work, the homotopy analysis method (HAM) is employed to develop a series solution
for shrinking flow in a rotating frame of reference. An incompressible and homogeneous sec-
ond grade fluid is bounded between the two porous walls. Convergence of the obtained ana-
lytic solution is carefully checked. Graphical results are presented and discussed. It is found
that the magnitude of x and z-components of dimensionless velocity in viscous fluid is more
in comparison to second grade fluid. However the magnitude of dimensionless y-component
in second grade fluid is much than that of viscous fluid when a 6 0:5:

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Since 1961, attention has been focused to investigate the stretching flows under varied conditions. The boundary layer
flow by a continuously solid and moving surface is first performed by Sakiadis [1]. The majority of attempts of linear and
nonlinear stretching flows include the viscous fluid model and less is presented for non-Newtonian fluids. Few investigations
describing the stretching flows may be mentioned through Refs. [2–14]. Existing literature shows that shrinking flows have
been scarcely discussed. Wang [15] obtained the unsteady shrinking film solution. The existence and uniqueness of steady
shrinking flow of a viscous fluid for specific suction parameter is studied by Miklavcic and Wang [16]. Sajid et al. [17] exam-
ined the steady shrinking flow of a viscous fluid.

In recent time the magnetohydrodynamic flows of non-Newtonian fluids have attracted the attention of engineers, phys-
icists, numerical simulists, modelers and mathematicians as well. These fluids are encountered mainly in industry and tech-
nology. The constitutive equations of such fluids give rise to equations which in general are higher order and more
complicated than the Navier–Stokes equations. Therefore, one needs the extra boundary/initial conditions for a unique solu-
tion. In view of all these challenges, the present paper deals with the steady rotating flow of a shrinking surface. Modeling of
the problem is based upon the constitutive equations obeying the magnetohydrodynamic (MHD) second grade fluid in a por-
ous channel. The model of second grade fluid can describe the normal stress effects. However this model does not predict
shear thinning/shear thickening, relaxation and retardation effects. Such fluids have promising applications in the petroleum
industry, polymer technology, designing cooling systems with liquid metals, MHD generators, flow meters, pumps and in the
purification of crude oil etc. The flows in porous channel are particularly important in lubrication and viscometry. The flows
under boundary layer approximation are of great value in reducing frictional drag on the hulls of ships and submarines.
Moreover these have applications in biomedical engineering, for instance in the dialysis of blood in artificial kidney, blood
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flow in the capillaries, flow in blood oxygenators. Engineering applications include the design of filters, the porous pipe de-
sign, in transpiration cooling boundary layer control and gaseous diffusion. The organization of the paper is given as follows.

Section 2 includes the problem development. Series solution is evaluated by HAM [18–35]. Section 4 comprises the con-
vergence of derived solution. Discussion of results is made in Section 5. Section 6 synthesis the main points of the presented
analysis.

2. Problem formulation

We investigate the magnetohydrodynamic (MHD) steady flow of a thermodynamic second grade fluid between two por-
ous plates distant 2h apart. The lower and upper plates correspond to suction and blowing respectively. Under suction phe-
nomenon, the eventual state of boundary layer is of uniform thickness. Both fluid and plates are rotating with constant
angular velocity X about the y-axis. Fig. 1 shows the geometry of the problem. The appropriate definition of velocity is

V ¼ uðx; yÞ; vðyÞ;wðx; yÞ½ �; ð1Þ

where u, v and w are the velocity components in x, y and z-directions, respectively.
The equation of motion for MHD flow in a rotating frame are [36]

q
dV
dt
þ 2X� V þX� X� rð Þ

� �
¼ divTþ J� B; ð2Þ

in which J is the current density and B ¼ B0 þ b is total magnetic field, q is the fluid density, d=dt is the material derivative, T
is the Cauchy stress tensor, r is the radial coordinate, r is the electrical conductivity and B0 is an applied magnetic field. Note
that an induced magnetic field b is neglected under the assumption of small magnetic Reynolds number. No electric filed is
applied. The Cauchy stress tensor T in a second grade fluid is of the form [7]

T ¼ �pIþ lA1 þ a1A2 þ a2A2
1; ð3Þ

A1 ¼ L þ LT ; ð4Þ

A2 ¼
dA1

dt
þ A1L þ LT A1; ð5Þ

L ¼ $V: ð6Þ

Here p is the pressure, I is an identity tensor, l is the dynamic viscosity, a1; a2 are the material constants and A1; A2 are the
first two Rivilin Erickson tensors. Furthermore, a1 and a2 satisfy the following constraints [37]:

l P 0; a1 P 0; a1 þ a2 ¼ 0:

From Eqs. (1)–(6) and continuity equation, the resulting equations are given below
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Fig. 1. Schematic diagram of the problem.
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