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chaos in the form of an inequality is written in terms of the system parameters. Detailed
numerical studies including phase portrait, Poincare map and bifurcation diagram confirm
the analytical prediction and reveal the effect of excitation amplitude on the system tran-
sition to chaos. Moreover a robust adaptive fuzzy control algorithm previously proposed by
the authors is applied for controlling the chaotic motion. Additional numerical simulations
show the effectiveness of the proposed control approach.
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1. Introduction

In many cases it is highly desirable to reduce the size of MEMS mechanical elements [1]. This allows increasing the
frequencies of mechanical resonances and improving their sensitivity as sensors. Although miniaturized MEMS resonant
systems have many attractions, they also present several challenges. A main problem is how to achieve high output en-
ergy. This is an important practical issue for devices such as resonators and micro-sensors. A common solution to the
problem is the well-known electrostatic comb-drive [2]. However, this solution adds new constraints to the design of
the mechanical structure due to the many complex and undesirable dynamical behaviors associated with it. Another
way to face this challenge is to use a strong exciting force [3,4].The major drawback of this approach is the nonlinear
effect of the electrostatic force. When a beam is oscillating between parallel electrodes the change in capacitance is not a
perfectly linear function.

The forces attempting to restore the beam to its neutral position vary as the beam bends; the more the beam is
deflected, the more nonlinearity can be observed. In fact nonlinearities in MEMS resonators generally arise from two
distinct sources: relatively large structural deformations and displacement-dependent excitations. Further increasing
the magnitude of the excitation force will result in nonlinear vibration of the system which will be shown to be more
effective on dynamic behavior of resonator. A great deal of research has been performed to report various nonlinear
dynamic phenomena such as bending of the frequency-response curve and jump phenomenon in MEMS resonators
[5-7]. Nonlinearities also may lead to chaotic behaviors [8]. Modeling work [9] predicted the existence of chaotic motion
in electrostatic MEMS. In [10] the chaotic motion of MEMS resonant systems in the vicinity of specific resonant separ-
atrix is investigated based on corresponding resonant condition. An optimal linear feedback control strategy is used in
[11] to reducing the chaotic movement of the system proposed in [10] to a stable orbit. In [12] chaotic behavior of
micro-electromechanical oscillator which was modeled by a version of Mathieu equation investigated both numerically
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and experimentally. Chaotic motion was also reported in [13] for a micro-electromechanical cantilever beam under both
open and close loop control.

The present paper consists of six sections and one appendix. After a brief introduction in the present section (Section 1)
we will examine the mathematical model of micro beam resonator which is excited between two parallel electrodes in Sec-
tion 2. Melnikov integral is introduced in Section 3. In Section 4 to verify analytical findings and to further explore the chaotic
behavior of the resonator several numerical studies are performed. Various fuzzy control methods for control of vibrations
are proposed in the literature e.g., [14,15,16]. A robust adaptive fuzzy method is used to control chaotic motion based on [17]
in section 5. In the last section (Section 6) we will provide a summary and conclusions. In the appendix integration procedure
for the Melnikov function is described.

2. Mathematical model

The electrostatically actuated microbeam is shown in Fig. 1. An external driving force on the resonator is applied via an
electrical driving voltage that causes electrostatic excitation with dc-bias voltage between electrodes and the resonator:
Vi =V}, + V4 SinQt where V,, is the bias voltage, and V,c and Q are the AC amplitude and frequency, respectively. The net actu-
ation force, F,, can be expressed as [5]:
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where Cy implies the capacitance of the parallel-plate actuator at rest, d is the initial gap width and z is the vertical displace-
ment of the beam. The governing equation of motion for the dynamics of the MEMS resonator is:
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Z and z' represent the first and second time derivative of z, and Meg, b, k1and ks are effective lumped mass, damping coef-

ficient, linear mechanical stiffness and cubic mechanical stiffness of the system respectively. It is convenient to introduce the

following dimensionless variables:
Q
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where @y is the purely elastic natural frequency defined as:
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Assuming the amplitude of the AC driving voltage to be much smaller than the bias voltage, with the dimensionless quan-
tities defined in (3), the nondimensional equation of motion is obtained:
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where the new derivative operator, (-), denotes the derivative with respect to 7. It is worth mentioning that the correspond-
ing potential can be described as below if the potential is set to be zero at x = 0:
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Fig. 2 shows that the number of equilibrium points changes when applied voltage varies. When the bias voltage does not
exist there is only one stable state and the equilibrium point is a stable center point at x = 0. When the bias voltage exists;
at a critical position the resonator becomes unstable and is deflected against one of the stationary transducer electrodes
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Fig. 1. A schematic picture of the electrostatically actuated micromechanical resonator.
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