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a b s t r a c t

In this paper, the viscous flow on the outside of an expanding or contracting cylinder is
studied. The governing Navier–Stokes equations are transformed into a similarity equation,
which is solved by a shooting method. The solution is an exact solution to the unsteady
Navier–Stokes equations. Results show both trivial and non-trivial solutions. For trivial
solutions, there is no axial flow induced during the cylinder expansion or contraction.
However, for the non-trivial solutions which only exist for cylinder expansion, an axial flow
is generated and its strength increases with the increase in expansion speed.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Exact solutions of the Navier–Stokes (NS) equations play important roles in the development of fluid mechanics and pro-
vide interesting physical insights. Meanwhile, they are used as benchmarks for numerical code validation. Wang summa-
rized the available exact solutions of the unsteady [1] and of the steady state NS equations [2]. As pointed out by Wang,
‘‘On the other hand, similarity solutions, where v is implicit in the similarity transforms, and where universal curves can
be obtained once and for all, are exact solutions’’. However, exact solutions do not necessarily mean the solutions are in ana-
lytical closed form. For example, the steady stagnation point flow and the von Karman rotating disk problem were both ob-
tained in similarity form and solved numerically. Both are classical examples of exact solutions to the NS equations [2]. The
flow inside a channel or a tube with a stretching wall was solved by Brady and Acrivos [3]. The flow outside a stretching tube
with acceleration was analyzed by Wang [4]. All these solutions are exact solutions of the whole NS equations. The unsteady
flow inside a tube with time dependent diameter was first studied by Uchida and Aoki [5] and by Skalak and Wang [6], and
they calculated the internal flow velocity and pressure due to tube expansion or contraction. Later the unsteady flow in a
tube with both axial and radial motion was studied [7–9]. Recently, the flow was extended to a tube with porous walls
by considering mass suction and injection [10]. But the flow at the outside of the tube or cylinder did not receive much atten-
tion in the literature. Most recently, Fang et al. [11] analyzed an unsteady flow over a stretching cylinder with expanding
diameter. Due to the expansion of the cylinder, reversal flows were found in the results. In this work, we investigate the flow
purely induced by unsteady expansion or contraction of a cylinder. As will be shown in the following, the current results are
obtained based on similarity transformation and are exact solutions of the unsteady NS equations in a cylindrical coordinate
system.

1007-5704/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cnsns.2011.12.013

⇑ Corresponding author. Tel.: +1 919 5155230; fax: +1 919 5157968.
E-mail address: tfang2@ncsu.edu (T. Fang).

Commun Nonlinear Sci Numer Simulat 17 (2012) 3124–3128

Contents lists available at SciVerse ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns

http://dx.doi.org/10.1016/j.cnsns.2011.12.013
mailto:tfang2@ncsu.edu
http://dx.doi.org/10.1016/j.cnsns.2011.12.013
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


2. Mathematical formulation

Consider the laminar viscous flow over a cylinder or a tube with a time dependent diameter (either contracting or
expanding). Meanwhile, we assume there is no azimuthal velocity component. For incompressible fluids without body force
and based on the axisymmetric flow assumption, the three-dimensional unsteady NS equations in cylindrical coordinates
read [12]
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where the velocity vector is V
*

¼ ður;uzÞ; m is the kinetic viscosity, p is the fluid pressure, and q is the fluid density. Due to the
symmetry in the azimuthal direction, there are only two components in the cylindrical coordinates, say r and z. A schematic
of the flow configuration is illustrated in Fig. 1. In this work, we assume the cylinder diameter is varying as a function of time
aðtÞ ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
. For a positive value of b, the cylinder radius becomes smaller with time, e.g., contracting; while for a neg-

ative value of b, the diameter becomes larger with time, e.g., expanding. The boundary conditions (BCs) are

uz aðtÞ; z; tð Þ ¼ 0; ur aðtÞ; z; tð Þ ¼ � a0b
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p ; uzð1; z; tÞ ¼ 0; ð3a—3cÞ

where b is a constant showing the expansion/contraction strength, a(t) is the unsteady radius of the cylinder wall. The gov-
erning equations can be converted into a nonlinear ordinary differential equation with the following similarity transforma-
tion group,
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Based on the defined velocity components, it is straightforward to derive from Eq. (2a) that the pressure gradient @p/@r is a
function of time t and r, and is independent on z. That is, @p/@r = F(t ,r) and p ¼

R
Fðt; rÞdr þ Gðt; zÞwhere G(t,z) is the constant

of the integration. Therefore, it can be derived that @p/@z = @G(t,z)/@z. Hence, @p/@z is independent on r. Then evaluating Eq.
(2b) at r ?1 yields @ p/@z = 0. Then by substituting the velocities components into Eq. (2b) and rearranging terms, Eq. (2b)
can be transformed into a similarity equation as follows

gf 000 þ f 00 þ ff 00 � f 02 � Sðgf 00 þ f 0Þ ¼ 0 ð5Þ

with BCs (3a–3c) transformed into the following

f ð1Þ ¼ S; f 0ð1Þ ¼ 0; f 0ð1Þ ¼ 0; ð6a—6cÞ

where S ¼ ba2
0

4m is the unsteadiness parameter for the expanding/contracting cylinder showing the strength of expansion or
contraction. Increasing the magnitude of S means a faster cylinder expansion or contraction. This parameter also indicates
the ratio of a defined cylinder radius variation speed (ba0) to the viscous diffusion speed (m/a0) like a Reynolds number be-
cause S can be rewritten as S ¼ ba0

4m=a0
. Based on previous discussion, we have shown that the fluid pressure does not depend on

z. The pressure can be found from Eq. (2a) as
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Fig. 1. Schematic of flow over an expanding cylinder with time dependent radius.
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