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a b s t r a c t

Based on the normal form theory for retarded functional differential equations by Faria and
Magalhães, a symbolic computation scheme together with the Maple program implemen-
tation is developed to compute the normal form of a Hopf bifurcation for retarded func-
tional differential equations with unknown parameters. Not operating as the usual way
of computing the center manifold first and normal form later, the scheme features comput-
ing them simultaneously. Great efforts are made to package this task into one Maple pro-
gram with an input interface provided for defining different systems. The applicability of
the Maple program is demonstrated via three kinds of delayed dynamic systems such as
a delayed Liénard equation, a simplified drilling model and a delayed three-neuron model.
The effectiveness of Maple program is also validated through the numerical simulations of
those three systems.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Memory effects, hereditary effects and time lag effects are intrinsically similar features of many dynamical systems. They
give rise to an irreducible influence of the past history on the evolution of a dynamic system. In this context, a deviated time-
argument is usually introduced and embodied as the term of time delay in mathematical modeling of such a delayed dy-
namic system. Generally speaking, differential equations with time delays belong to the category of Functional Differential
Equations (FDEs) [1,2], where, for clarity, the past dependence through only state variables leads to Retarded Functional Dif-
ferential Equations (RFDEs) or Retarded Delay Differential Equations (RDDEs), while the past dependence on the derivative of
the state variables yields Neutral Functional Differential Equations (NFDEs) or Neutral Delay Differential Equations (NDDEs)
[3]. As opposed to Ordinary Differential Equations (ODEs), the state space of FDEs is infinite-dimensional. This fact implies an
exceeding complexity in both analytical and numerical treatments.

To study the local dynamic behavior of a system around its equilibrium point, the center manifold reduction and the nor-
mal form transformation have been proved to be very effective. At a bifurcation point, the flow near the equilibrium is essen-
tially governed by the vector field on the finite dimensional center manifold. With the center manifold reduction, the original
FDEs can be reduced to ODEs. Moreover, after the normal form implementation, where successive, near-identity, nonlinear
transformations are used, a simpler form can be obtained for the purpose of simplifying the dynamical analysis [4]. These
two methods have been widely applied to studying the local bifurcations of delayed dynamic systems. For example, Xu
and Lu studied the Hopf bifurcation of delayed Liénard equations [5]. Stone and Campbell presented an analysis on the Hopf
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bifurcation for a nonlinear Delay Differential Equation (DDE) modeling a drilling process [6]. Liao et al. considered the Hopf
bifurcation analysis in a Tri-neuron model with a time delay [7]. In the above mentioned researches, a center manifold was
computed in advance and then the calculation of normal form was followed. Faria and Magalhães provided an alternative
method for obtaining the normal form of an RFDE by considering the RFDE as an ODE in an appropriate infinite-dimensional
phase space so that the center manifold needs not to be computed beforehand [8,9]. In summary, there are mainly two pos-
sible approaches to the normal form analysis for a delayed dynamic system as follows:

(A) Compute the center manifold and project the flow of the system on the center manifold first, and then compute the
corresponding normal form [5–7].

(B) Conduct the center manifold reduction and the normal form analysis simultaneously [8,9].

Although the normal form is a very effective tool for studying the local bifurcations of FDEs, the corresponding procedures
are usually very complicated and tedious. Fortunately, with the development of computer algebra systems, such as Maple
and Mathematica, many efforts have been made to develop symbolic procedures so that the normal form can be easily com-
puted [10,11]. For example, Belair and Campell presented a symbolic algebra algorithm to approximate the center manifold
for DDEs [12,13]. Babram et al. addressed the algorithms for computing the terms of the center manifold for RFDEs and
NFDEs [14,15]. Qesmi et al. developed symbolic procedures for computing the center manifold for the Hopf bifurcation,
the Bogdanov–Takens bifurcation and the Fold–Hopf bifurcation for RFDEs [16–18]. All the above mentioned algorithms
or procedures are based on the approach (A), which implies that the center manifold needs to be computed first. Babram
mentioned a computation scheme for RFDEs without bifurcation parameters according to the approach (B) [19]. In [16–
18], Qesmi et al. argued that it is difficult to apply approach (B) to computing the normal forms of higher orders because
the approach has the necessity of solving a functional differential equation. However, the functional differential equation
can be transformed as an initial value problem. With an increasing power of computer algebra systems, the approach (B)
could be automatically implemented.

This study aims at developing a Maple program based on the approach (B) so as to compute the normal form of a Hopf
bifurcation for an RFDE with unknown parameters as follows

_xðtÞ ¼ LðaÞxt þ Fðxt ;aÞ; ð1Þ

with xt 2 Cn ¼ Cð½�r;0�; RnÞ; xtðhÞ ¼ xðt þ hÞ;a 2 Rpðp ¼ 1Þ;a # LðaÞ is a C1 function with values in the space of bounded lin-

ear operators which project the Banach space Cn ¼ Cð½�r;0�; RnÞ to Rn; Lð0Þxt :¼ L0xt ¼
R 0
�r d½gðhÞ�xtðhÞ, where g is an n � n

matrix-valued function of bounded variation defined on [�r,0]. and F is a C1 function from Cn � Rp to Rn with F(0,a) = 0
and F0(0,a) = 0 for all a 2 Rp, where F0 denotes the Frechet derivatives of F. The bifurcation parameter a is taken into account
during the normal form transformation so that no further unfolding for the parameter is needed [20].

As the Hopf bifurcation is considered in the study, the following hypothesis is assumed:

(H) The characteristic equation of Eq. (1) has a simple pair of eigenvalues c(a) ± ix(a), which cross the imaginary axis
transversely at a = 0 so that the following conditions hold

cð0Þ ¼ 0; xð0Þ ¼ xc > 0;
dcðaÞ

da

����
a¼0

– 0

and no other eigenvalue has zero real part.

The paper is organized as follows. In Section 2, some elementary notions and the theoretical background of RFDEs (for
more detail see [8]) are provided. The normal form transformation for an RFDE is implemented in Section 3 and the corre-
sponding computation scheme is outlined in Section 4. In Section 5, the powerfulness of the Maple program is demonstrated
via three kinds of delayed dynamical systems, including a delayed Liénard system, a simplified drilling system and a delayed
three-neuron system. The correctness of the Maple program is verified through the comparisons with the numerical simu-
lations of those three delayed dynamic systems. Some conclusions are drawn in Section 6.

2. Theoretical background

The linearized part of Eq. (1) takes the form of

d
dt

xt ¼ L0xt ð2Þ

and its solution defines a C0 semigroup T(t) on Cn, T(t)/ = xt(/), t P 0. The infinitesimal generator A0, which is associated with
T(t), is given by A0/ ¼ _/. A0 has the domain

DðA0Þ ¼ / 2 C1
n :

d/

dh

����
h¼0
¼ L0/

� �
;
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