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1. Introduction

Nonlinear equations are much more difficult to solve than linear ones, especially by means of analytic methods. Generally
speaking, there are two standards for a satisfactory analytic method of nonlinear equations:

(a) it can always give approximation expressions efficiently;
(b) it can guarantee that approximation expressions are accurate enough in the whole region of all physical parameters.

Using above two standards as a criterion, we can discuss the advantages and disadvantages of different analytic tech-
niques for nonlinear problems.

Perturbation techniques [1-6] are widely applied in science and engineering. Most perturbation techniques are based on
small (or large) physical parameters in governing equations or boundary conditions, called perturbation quantities. In gen-
eral, perturbation approximations are expressed in a series of perturbation quantities, and the original nonlinear equations
are replaced by an infinite number of linear (sometimes even nonlinear) sub-problems, which are completely determined by
the original governing equation and especially by the place where perturbation quantities appear. Perturbation methods are
simple, and easy to understand. Especially, based on small physical parameters, perturbation approximations often have
clear physical meanings. Unfortunately, not every nonlinear problem has such kind of perturbation quantity. Besides, even
if there exists a small parameter, the sub-problem might have no solutions, or might be rather complicated so that only a few
of the sub-problems can be solved. Thus, it is not guaranteed that one can always get perturbation approximations efficiently
for any a given nonlinear problem. More importantly, it is well-known that most perturbation approximations are valid only
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for small physical parameters. In general, it is not guaranteed that a perturbation result is valid in the whole region of all
physical parameters. Thus, perturbation techniques do not satisfy not only the standard (a) but also the standard (b) men-
tioned at the beginning of this section.

To overcome the restrictions of perturbation techniques, some traditional nonperturbation methods are developed, such
as Lyapunov’s artificial small parameter method [7], the §-expansion method [8,9], Adomian decomposition method [10-15],
and so on. In principle, all of these methods are based on a so-called artificial parameter, and approximation solutions are
expanded into series of such kind of artificial parameter. This artificial parameter is often used in such a way that one
can get approximation solutions efficiently for a given nonlinear equation. Compared with perturbation techniques, this
is indeed a great progress. However, in theory, one can put the artificial small parameter in many different ways, but unfor-
tunately there are no theories to guide us how to put it in a better place so as to get a better approximation. For example,
Adomian decomposition method simply uses the linear operator dk/dx in most cases, where k is the highest order of deriv-
ative of governing equations, and therefore it is rather easy to get solutions of the corresponding sub-problems by means of
integration k times with respect to x. However, such simple linear operator gives approximation solutions in power-series,
but unfortunately power-series has often a finite radius of convergence. Thus, Adomian decomposition method cannot en-
sure the convergence of its approximation series. Generally speaking, all traditional nonperturbation methods, such as
Lyapunov’s artificial small parameter method [7], the §-expansion method [8,9] and Adomian decomposition method
[10-15], can not guarantee the convergence of approximation series. So, these traditional nonperturbation methods satisfy
only the standard (a) but not the standard (b) mentioned before.

In 1992 Liao [16] took the lead to apply the homotopy [17], a basic concept in topology [18], to get analytic approxima-
tions of nonlinear differential equations. Liao [16] described the early form of the homotopy-analysis method (HAM) in 1992.
For a given nonlinear differential equation

Nux)] =0, xeQ,

where /" is a nonlinear operator and u(x) is a unknown function, Liao constructed a one-parameter family of equations in the
embedding parameter q € [0, 1], called the zeroth-order deformation equation

(1-9)ZUx;q) —u(X)] +qAUXq)] =0, x€Q, qel0,1], (1)

where ¢ is an auxiliary linear operator and uo(x) is an initial guess. The homotopy provides us larger freedom to choose both
of the auxiliary linear operator .# and the initial guess than the traditional nonperturbation methods mentioned before, as
pointed out later by Liao [19-21]. At ¢ = 0 and q = 1, we have U(x; 0) = up(x) and U(x; 1) = u(x), respectively. So, if the Taylor
series

+00
Ux;q) = uo(x) + Y _ tn(X)q" (2)
n=1
converges at ¢ = 1, we have the so-called homotopy-series solution
+00
u(x) = uo(X) + Y _ tn(x), (3)
n=1

which must satisfy the original equation .4#"[u(x)] = 0, as proved by Liao [19,20] in general. Here, u,(x) is governed by a linear
differential equation related to the auxiliary linear operator .# and therefore is easy to solve, as long as we choose the aux-
iliary linear operator properly. In some cases, one can get convergent series of nonlinear differential equations by choosing
proper linear operator and initial guess. However, Liao [22,20] found that this early homotopy-analysis method can not al-
ways guarantee the convergence of approximation series. To overcome this restriction, Liao [22] in 1997 introduced such a
nonzero auxiliary parameter ¢, to construct a two-parameter family of equations, i.e. the zeroth-order deformation
equation.

(1-9)Z[Ux:q) —u(X)] = g [U(X;:q)l, xe€Q, qe[0,1]. (4)

In this way, the homotopy-series solution (3) is not only dependent upon x but also the auxiliary parameter co. It was found
[22,19,20] that the auxiliary parameter ¢, can adjust and control the convergence region and rate of homotopy-series solu-
tions. In essence, the use of the auxiliary parameter ¢y introduces us one more “artificial” degree of freedom, which has no
physical meaning but greatly improved the early homotopy-analysis method: it is the auxiliary parameter ¢y which provides
us a convenient way to guarantee the convergence of homotopy-series solution [22,20]. Currently, Liang and Jeffrey [23]
used a simple example to illustrate the importance of the auxiliary parameter c,. Besides, Liao [24] revealed the relationship
between the homotopy-analysis method (in some special cases) and the famous Euler transform, which explains clearly why
the homotopy-analysis method can ensure the convergence of homotopy-series solution. Due to this reason, ¢, was renamed
currently as the convergence-control parameter [25].

! Liao [22] originally used the symbol h to denote the auxiliary parameter. But, h is well-known as Planck’s constant in quantum mechanics. To avoid
misunderstanding, we suggest to use the symbol ¢, to denote the “basic” convergence-control parameter.
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