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a b s t r a c t

This paper presents a study of the relationship between the homotopy analysis method
(HAM) and harmonic balance (HB) method. The HAM is employed to obtain periodic
solutions of conservative oscillators and limit cycles of self-excited systems, respec-
tively. Different from the usual procedures in the existing literature, the HAM is mod-
ified by retaining a given number of harmonics in higher-order approximations. It is
proved that as long as the solution given by the modified HAM is convergent, it con-
verges to one HB solution. The Duffing equation, the van der Pol equation and the flut-
ter equation of a two-dimensional airfoil are taken as illustrations to validate the
attained results.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decade, Liao described a nonlinear analytical technique which does not require small parameters and
thus can be applied to solve nonlinear problems without small or large parameters [1–4]. This technique is based on
homotopy theory, which is an important part of topology, thus called the homotopy analysis method (HAM). Its funda-
mental idea is to construct a class of homotopy in a rather general form by introducing an auxiliary parameter, through
which nonlinear problems can be transformed into a series of linear sub-problems. The auxiliary parameter can provide
us with a convenient way to control the convergence of approximation series and adjust convergence regions when nec-
essary. The systematical description of this method was given in Ref. [5]. Also in this paper, the author discussed the
convergence of the solution series and showed that as long as the series given by HAM converges, it must converge
to one solution of the nonlinear problem under consideration. In the rapid development of HAM, it has been widely used
in various nonlinear problems [6–10].

Perturbation method [11] is one of the most widely applied analytic tools for nonlinear problems. Essentially, perturba-
tion techniques are based on the existence of a small/large parameter or variable, which is often called perturbation quantity.
The existence of perturbation quantities, however, is a cornerstone of these techniques. The dependence of perturbation
techniques on small/large parameters might be avoided by introducing a so-called artificial small parameter, such as the
Lyapunov artificial small parameter method [12], the d-expansion method [13] and the Adomian’s decomposition method
[14]. Liao [15] proved that they are all special cases of the HAM, which implies the HAM is more generalized. Additionally,
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exploring the inner relationship between existing computational techniques is of fundamental interest to many researchers
engaged in computing science. Thus, it is worth and interesting to investigate its relationship of the HAM to other methods
for nonlinear systems.

The main aim of this paper is to study the relationship between the HAM and harmonic balance (HB) method. The basic
procedure of the HB method is to transform the problem under consideration into a set of nonlinear algebraic equations by
describing the possible periodic/limit cycle solution as truncated Fourier series [16]. That means the solutions given by the
HB method possess a limited number of harmonics. However, the highest harmonic of the periodic solutions obtained by the
HAM increases unboundedly [6]. For this issue, the HAM is slightly modified by retaining several lower-order harmonics to
obtain solutions in the same form of HB ones. A major finding of this paper is that as long as the solution given by the mod-
ified HAM converges, it must converge to one HB solution. In order to validate it, proofs are given and three numerical exam-
ples are also presented.

2. Homotopy analysis method

Consider a nonlinear autonomous system described by

f ðx; _x; €xÞ ¼ 0 ð1Þ

where the superscript denotes the differentiation with respect to time t. In this study, system (1) may either be a conserva-
tive or self-excited system so that it possesses at least one periodic (or limit cycle) solution. Introducing a new time scale

s ¼ xt ð2Þ

where x is the angular frequency of the possible periodic solution, then (1) becomes

f ðx;xx0;x2x00Þ ¼ 0 ð3Þ

where the superscript denotes the differentiation with respect to s.

2.1. Self-excited system

In general, limit cycles of self-excited oscillating systems contain two important physical parameters, i.e., the frequency x
and the amplitude a of oscillation. They are both independent upon the initial conditions. Without loss of generality, consider
simple initial conditions

xð0Þ ¼ a; x0ð0Þ ¼ 0: ð4Þ

For self-excited system, a is the amplitude of the limit cycle to be determined.
According to Eqs. (3) and (4), let

x0ðsÞ ¼ a0 cosðsÞ ð5Þ

be the initial guess of xðsÞ, where a0 is the one of a. Likewise, let x0 be the initial approximation of x. The HAM is based on
such continuous variations /ðs; pÞ; XðpÞ and A(p) that, as the embedding parameter p increases from 0 to 1, /ðs; pÞ varies
from the initial guess x0ðsÞ ¼ a coss to the exact solution xðsÞ, so do XðpÞ and A(p) from x0 and a0 to x and a, respectively.

The rule of solution expression [6] states that xðsÞ can be described as a set of base functions cosðksÞ; sinðksÞj k ¼ 0;1;2; . . .f g,
based on which we can choose such an auxiliary linear operator

L /ðs; pÞ½ � ¼ @
2/ðs; pÞ
@s2 þ /ðs; pÞ ð6Þ

so that

L½coss� ¼ L½sin s� ¼ 0: ð7Þ

Then according to Eq. (3), we define the following nonlinear operator:

W /ðs;pÞ;XðpÞ;AðpÞ½ � ¼ f /ðs;pÞ;XðpÞ @/ðs; pÞ
@s

;X2ðpÞ @
2/ðs;pÞ
@2s

" #
ð8Þ

where p 2 ½0;1� is the embedding parameter. Letting h be a nonzero auxiliary parameter, we construct such a homotopy in a
general form

H /ðs; pÞ; h;p½ � ¼ ð1� pÞL /ðs; pÞ � x0ðsÞ½ � � hpW /ðs; pÞ;XðpÞ;AðpÞ½ �: ð9Þ

Setting H½/ðs; pÞ; h; p� ¼ 0 yields a family of equations

ð1� pÞL /ðs;pÞ � x0ðsÞ½ � ¼ hpW /ðs; pÞ;XðpÞ;AðpÞ½ � ð10Þ

subject to the initial conditions
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