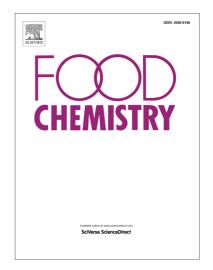
Accepted Manuscript

Electronic structure of some thymol derivatives correlated with the radical scavenging activity: Theoretical study

Ashkan Jebelli Javan, Marjan Jebeli Javan


PII: S0308-8146(14)00789-4

DOI: http://dx.doi.org/10.1016/j.foodchem.2014.05.073

Reference: FOCH 15856

To appear in: Food Chemistry

Received Date: 14 August 2013 Revised Date: 6 April 2014 Accepted Date: 14 May 2014

Please cite this article as: Javan, A.J., Javan, M.J., Electronic structure of some thymol derivatives correlated with the radical scavenging activity: Theoretical study, *Food Chemistry* (2014), doi: http://dx.doi.org/10.1016/j.foodchem.2014.05.073

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Electronic structure of some thymol derivatives correlated with the
2	radical scavenging activity: Theoretical study
3	Ashkan Jebelli Javan ^{a,} *, Marjan Jebeli Javan ^b
4	
5	^a Department of Food Hygiene, Faculty of Veterinary Medicine, Semnan University,
6	Semnan, Iran
7	^b Department of Chemistry, Sharif University of Technology, P.O. Box: 11365-9516,
8	Tehran, Iran
9	* Corresponding author at: Department of Food Hygiene, Faculty of Veterinary
10	Medicine, Semnan University, Semnan, Iran, Zip code: 35131-19111,
11	Tel: +98 231 3323088, Fax: +98 231 3335404
12	Email Address: jebellija@profs.semnan.ac.ir
13	ABSTRACT
14	
15	Molecules acting as antioxidants capable of scavenging reactive oxygen species
16	(ROS) are of upmost importance in the living cell. Thymol derivatives exhibit
17	various antioxidant activities and potential health benefits. Exploration of
18	structure-radical scavenging activity (SAR) was approached with a wide range
19	of thymol derivatives. To accomplish this task, the DPPH experimental assay
20	along with quantum-chemical calculations were also employed for these
21	compounds. By comparing the structural properties of the derivatives of interest,
22	their antioxidant activity was explained by the formation of an intramolecular
23	hydrogen bond and the presence of unsaturated double bond (-CH=CH
24	substituent) in their radical spices. Moreover, the delocalization of odd electrons
25	in these radicals has been investigated by natural bond orbital analysis and
26	interpretation of spin density maps. Reactivity order of the compound towards
27	the ROS: HO•, HOO•, and O_2 • was found to be as HO•> HOO•>> O_2 •.
28	Keywords: Thymol radical scavenging activity, Reactive oxygen species, Bond
29	dissociation energy, DPPH assay, DFT study, Ionization potential.
30	
31	Abbreviations
32	DFT: Density Functional Theory
33	B3LYP: Becke, three-parameter, Lee-Yang-Parr
34	BDE: Bond Dissociation Energy

Download English Version:

https://daneshyari.com/en/article/7596095

Download Persian Version:

https://daneshyari.com/article/7596095

<u>Daneshyari.com</u>