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a b s t r a c t

This investigation reports the three-dimensional flow of Jeffrey fluid over a linearly stretch-
ing surface. Transformation method has been utilized for the reduction of partial differen-
tial equations into the ordinary differential equations. The solutions of the nonlinear
systems are presented by a homotopy analysis method (HAM). The reported graphical
results are analyzed. A comparative study with the previous results of viscous fluid in
the literature is made.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Interest of the researchers in the flows of non-Newtonian fluids is on the leading edge during the last few decades. Such
interest in fact is accelerated because of a broad range of applications of non-Newtonian fluids in the various disciplines, for
instance in biological sciences, geophysics, chemical and petroleum industries. The Navier–Stokes equations cannot ade-
quately describe the flow of non-Newtonian fluids. The constitutive equations are able to predict the rheological character-
istics. In view of rheological parameters, the constitutive equations in the non-Newtonian fluids are more complex and thus
give rise the equations which are complicated than the Navier–Stokes equations. The versatile nature of fluids does not pro-
vide a single constitutive equation by which all the non-Newtonian fluids can be studied. Hence several constitutive equa-
tions have been considered by the various researchers [1–10] in the field.

There is extensive literature available on the two-dimensional and axisymmetric flows over a stretching surface since the
seminal works of Sakiadis [11,12]. The three-dimensional flow over a stretching surface has not been extensively discussed
so far. Ariel [13] found the homotopy perturbation and exact solutions for the three-dimensional flow of a viscous fluid over
a stretched surface. The magnetohydrodynamic (MHD) three-dimensional viscous flow over a porous stretching surface has
been reported by Hayat and Javed [14]. Xu et al. [15] analyzed the MHD and heat transfer effects on the time-dependent
three-dimensional flow over on impulsively stretching plate. Hayat and Awais [16] discussed the three-dimensional flow
of a Maxwell fluid over a stretching surface.

The purpose of current investigation is to venture further in the regime of three-dimensional flows of the non-Newtonian
fluids over a linearly stretching surface. Thus, we consider Jeffery fluid in this paper. The Jeffrey model [17–20] is relatively
simpler linear model using time derivatives instead of convected derivatives for example the Maxwell model or an Oldroyd-
B model does. This fluid model represents a rheology different from the Newtonian fluid. The paper is organized in the
following pattern. Section 2 contains the formulation. The series solution by the homotopy analysis method (HAM)
[21–26] has been developed and the related convergence analysis is presented in Section 3. The discussion regarding graphs
is also included in the same section.
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2. Definition of the problem

We study an incompressible three-dimensional flow of a Jeffery fluid over a linearly stretching sheet at z = 0. The fluid
occupies the space z > 0 and the motion of fluid is due to non-conducting stretching sheet. The constitutive expressions
in a Jeffery fluid satisfy

T ¼ �pIþ S; ð1Þ

S ¼ l
1þ k1

_rþ k2€rð Þ; ð2Þ

in which p denotes the pressure, I the identity tensor, l the dynamic viscosity, k1 the ratio of relaxation and retardation
times, k2 the retardation time, dots over the quantities denote material differentiation and

_r ¼ rV þ ðrVÞT ; ð3Þ

€r ¼ d
dt
ð _rÞ; ð4Þ

where d
dt is the material differentiation.

The continuity equation and equation of motion under the assumptions associated with the boundary layer flow yield
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with the following boundary conditions

u ¼ uwðxÞ ¼ ax; v ¼ vwðyÞ ¼ by; w ¼ 0 at z ¼ 0;

u! 0; v ! 0;
@u
@z
! 0;

@v
@z
! 0; as z!1; ð8Þ

where u, v and w are the velocities in the x, y and z directions, respectively, mthe kinematic viscosity and the constants a > 0
and b > 0.

If prime denotes differentiation with respect to g then setting

g ¼
ffiffiffi
a
m

r
z; u ¼ axf 0ðgÞ; v ¼ ayg0ðgÞ; w ¼ �

ffiffiffiffiffiffi
am
p
ff ðgÞ þ gðgÞg ð9Þ

Eq. (1) is automatically satisfied and Eqs. (5)–(8) give

f 000 þ ð1þ k1Þ ðf þ gÞf 00 � f 0
2

h i
þ b f 00

2 � ðf þ gÞf 0000 � g0f 000
h i

¼ 0; ð10Þ
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2

h i
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2 � ðf þ gÞg 0000 � f 0g000
h i

¼ 0; ð11Þ

f ð0Þ ¼ 0; gð0Þ ¼ 0; f 0ð0Þ ¼ 1; g0ð0Þ ¼ c; at g ¼ 0;
f 0ð1Þ ¼ 0; g0ð1Þ ¼ 0; f 00ð1Þ ¼ 0; g00ð1Þ ¼ 0; as g!1; ð12Þ

in which the Deborah number b and the stretching ratio c are defined by

b ¼ k2a; c ¼ b=a: ð13Þ

It is noticed that the two-dimensional system (g = 0) can be recovered for c = 0 and is given by

f 000 þ ð1þ k1Þ ff 00 � f 0
2
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2 � ff
0000h i
¼ 0; ð14Þ

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1; at g ¼ 0;
f 0ð1Þ ¼ 0; f 00ð1Þ ¼ 0 as g!1: ð15Þ

For axisymmetric flow (f = g) and c = 1 and thus (10) reduces to
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with the boundary conditions (15).
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