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Abstract

We use center manifold theory to analyze a model of gene transcription and protein synthesis which consists of an
ordinary differential equation (ODE) coupled to a delay differential equation (DDE). The analysis involves reformulating
the problem as an operator differential equation which acts on function space, with the result that an infinite dimensional
system is reduced to one of two dimensions. This work extends a previous CNSNS paper in which this problem was treated
by Lindstedt’s method. The present work is shown to provide approximations of general motions, including the approach

to a periodic motion, in contrast to Lindstedt’s method, which approximates only the periodic motion itself. In particular
we show that the origin is asymptotically stable for the critical (bifurcation) value of the delay parameter.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper involves a mathematical model of gene expression [6]. As explained in [12], a gene, i.e. a section
of the DNA molecule, is copied (transcribed) onto messenger RNA (mRNA), which diffuses out of the nucleus
of the cell into the cytoplasm, where it enters a subcellular structure called a ribosome. In the ribosome the
genetic code on the mRNA produces a protein (a process called translation). The protein then diffuses back
into the nucleus where it represses the transcription of its own gene.

The model takes the form of two equations, one an ordinary differential equation (ODE) and the other a
delayed differential equation (DDE). The delay is due to an observed time lag in the transcription process. As
shown in [12], the governing equations may be written in the following nondimensional form:

_n ¼ �ln� Kgd þ H 2g
2
d þ H 3g

3
d ð1Þ
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_g ¼ n� lg ð2Þ

where n(t) and g(t) are respectively the nondimensional deviations from equilibrium concentrations of mRNA
and protein, where gd = g(t � T) represents the delay, and where l, K, H2 and H3 are given constants.

In a previous paper, we used an approximate method called Lindstedt’s method to investigate the foregoing
problem [12]. Lindstedt’s method provides a closed form asymptotic expansion for the periodic motion of a
dynamical system [10]. The present paper complements the previous work by providing a center manifold
analysis of the same problem. The advantage of the center manifold approach is two-fold. Firstly it can be
used, together with an asymptotic method such as averaging, to provide approximations of general motions,
including the approach to a periodic motion, in contrast to Lindstedt’s method, which approximates only the
periodic motion itself. Secondly, center manifold analysis is based on theorems [2] which place the results on a
valid mathematical basis, in contrast to the strictly formal asymptotic analysis of Lindstedt’s method.

2. Center manifold analysis

The idea of center manifold analysis is to reduce the DDE system, which is infinite dimensional, to a two
dimensional system by projecting the original dynamics onto the eigenvectors corresponding to purely imag-
inary eigenvalues. The center manifold is a two dimensional surface which is tangent to those two eigenvec-
tors. In order to accomplish this, the DDE is reformulated as an evolution equation on a function space. The
idea here is that the initial condition for the DDE consists of a function defined on �T 6 t 6 0. As t increases
from zero we may consider the piece of the solution lying in the time interval [�T + t, t] as having evolved
from the initial condition function. In order to avoid confusion, the variable h is used to identify a point in
the interval [�T, 0], whereupon x(t + h) will represent the piece of the solution which has evolved from the
initial condition function at time t. From the point of view of the function space, t is a parameter, and it is
h which is the independent variable. To emphasize this, we write:

xtðhÞ ¼ xðt þ hÞ ð3Þ
We begin the center manifold analysis by transforming the DDE system (1) and (2) into the following oper-

ator differential equation, which acts on a function space consisting of continuously differentiable functions on
[�T, 0] (cf. [4,11,1,5,7,8]):

_xt ¼ Axt þ F ðxtÞ ð4Þ
where the column vector xt, the linear operator A, and the nonlinear operator F are defined as follows:

xtðhÞ ¼
nt

gt

� �
ðhÞ ð5Þ

AxtðhÞ ¼
d

dh xtðhÞ; h 2 ½�T cr; 0Þ
Lxtð0Þ þMxtð�T crÞ; h ¼ 0

�
ð6Þ

F ðxtÞðhÞ ¼
0; h 2 ½�T cr; 0Þ

f xtð0Þ; xtð�T crÞð Þ; h ¼ 0

�
ð7Þ

The matrix L in Eq. (6) is associated with the linear nondelayed terms of (1), (2). Similarly M is associated with
the linear delayed terms. In (7) f is associated with the nonlinear terms of (1), (2). Thus for this system L, M,
and f become

L ¼ �l 0

1 �l

� �
: ð8Þ

M ¼ 0 �K
0 0

� �
: ð9Þ

f xtð0Þ; xtð�T crÞð Þ ¼ H 2gtð�T crÞ2 þ H 3gtð�T crÞ3

0

� �
ð10Þ

Note that the original DDE system (1) and (2) appears as a boundary condition at h = 0. The flow on the rest
of the interval is based on the identity oxtðhÞ

ot ¼
oxtðhÞ

oh , which follows from Eq. (3).
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