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This paper presents a procedure for predicting the response of Duffing system with delayed
feedback bang-bang control under combined harmonic and real noise excitations by using
the stochastic averaging method. First, the time-delayed feedback bang-bang control force
is expressed approximately in terms of the system state variables without time delay. Then
the averaged It6 stochastic differential equations for the system are derived by using the
stochastic averaging method. Finally, the response of the system is obtained by solving
the Fokker-Plank-Kolmogorov (FPK) equation associated with the averaged Itd equations.
It is shown that the time delay in feedback control can deteriorate the control effectiveness
and cause bifurcation of stochastic jump of Duffing system. The validity of the proposed
method is confirmed by digital simulation.
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1. Introduction

It is well known that time delay in real active control systems is usually unavoidable due to the time spent in measuring
system states, on-line data processing, calculating and executing the control forces, etc. This time delay causes unsynchro-
nized application of the control force, and often leads to poor performance or instability of the controlled systems. In the past
two decades, much attention has been paid to studying the time delay problem in control community [1-3]. Time delay ef-
fects on controlled systems subject to deterministic excitation have been studied extensively [4-10]. For the case of con-
trolled systems with time delay excited by Gaussian white noise, the effects of time delay on the controlled linear and
nonlinear systems have been studied by Di Paola and coworkers [11,12] using an approach based on the Taylor expansion
of the control force and another approach to finding exact stationary solution. Recently, the response and stability of quasi-
integrable Hamiltonian systems with delayed feedback control under Gaussian white noise excitation have been studied by
Liu and Zhu [13-15] using the stochastic averaging method.
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In all these studies, the excitation of systems is purely harmonic excitation or purely random noise. However, many
mechanical and structural systems are often subjected to both random and harmonic excitations. A typical example of
such systems is uncoupled flapping motion of rotor blades of a helicopter in forward flight under the effect of atmo-
spheric turbulence [16]. To the author’s knowledge, no attention has been paid to predicting the response of strongly
nonlinear systems with delayed feedback control under combined harmonic and wide-band real noise excitations. In
the present paper, the stochastic averaging method [17] is extended to predicting the response of strongly nonlinear
Duffing system with delayed feedback bang-bang control under combined harmonic and wide-band real noise excita-
tions. The delayed feedback bang-bang control force is expressed equivalently in terms of feedback bang-bang control
force without time delay and the system is transformed into the It6 stochastic differential equations for the system
without time delay, from which the averaged Itd equations are derived by using the stochastic averaging method
and the stationary probability density of the amplitude and mean amplitude of the system are obtained from solving
the Fokker-Plank-Kolmogorov (FPK) equation associated with the averaged It6 equations. The effect of time delay in
feedback bang-bang control on the response is analyzed. Based on the stationary probability of amplitude obtained
by the proposed procedure, the effect of time delay in feedback bang-bang control on the stochastic jump of Duffing
oscillator is also studied.

2. Duffing system with delayed feedback bang-bang control

The motion equation of a nonlinearly damped Duffing oscillator with delayed feedback bang-bang control under external
harmonic excitation and external and parametric wide-band noise excitations is of the form

X+ (B1 + BoXP)X + 02X + oX® = Ecos Qt + & (t) + X&,(t) + Uy, (1)

where S, 2, Wo, &, E, Q are positive constants denoting the damping coefficients, natural frequency of degenerated linear
oscillator, intensity of nonlinearity, amplitude and frequency of harmonic excitation, respectively; u. = u(X;) =
—bsgn(X(t — 1)) is time-delayed feedback bang-bang control force. where 7 is the time delay, ‘sgn’ denotes sign function.
u has constant magnitude b, in the opposite direction of X, and changes direction at X; = 0. &(t) (i = 1, 2) are independently
stationary and ergodic processes with zero mean and rational spectral densities
Si(w):& 21 5 , 1=1,2 (2)
T (2 — w?)* + 45 wraw?

in which w;, ¢; and D; are constants. &(t) can be regarded as the output of the second order filter & + 2¢;w;&; + ¢ =
Wi(t), (i = 1,2) where Wj(t) are Gaussian white noises in the sense of Stratonovich with intensities 2D;. It is assumed that
B.E, b are of the same small order.

The response of system (1) can be considered as random spread of periodic motion of degenerated system
X + w2x + ox3 = 0 around (0,0) in phase plane (X, X). The solution can be assumed in the following form [17]:

).((t) = Acos &(t) 3)
X(t) = —Av(A, @) sin P(t)
where cos®(t) and sind(t) are called the generalized harmonic functions,
o(t) =P(t) + O(t),
dw \/Z[U(A) — U(Acos ®)] (4)
dr A%sin® @

VA, P) =

and A, @, ¥ and @ are all random processes. U(x) = w3x?/2 + ax*/4 is the potential energy of the system. v(A, @) is instan-
taneous frequency of the system and can be approximated by the following finite sum with a relative error less than 0.03%:

v(a, @) = vo(a) + vo(a)cos2¢ + va(a) cos4¢ + ve(a) cos 6, (5)
where

vo(a) = (w} + 30a®/4)*(1 — 72/16),

va(a) = (0} + 30a®/4) (22 + 373 /64),

v4(a) = (03 + 30a?/4)'* (—-7%/16), (6)

v6(a) = (0 + 30a’/4)"2 (7 /64),

2 = aa®/4(wj + 30a? /4).

The average frequency w(a) = vo(a), and the following approximate relation can be used in the following averaging:
D(t) ~ W(A)E + O/1). (7)
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