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a b s t r a c t

This paper presents a procedure for predicting the response of Duffing system with delayed
feedback bang–bang control under combined harmonic and real noise excitations by using
the stochastic averaging method. First, the time-delayed feedback bang–bang control force
is expressed approximately in terms of the system state variables without time delay. Then
the averaged Itô stochastic differential equations for the system are derived by using the
stochastic averaging method. Finally, the response of the system is obtained by solving
the Fokker–Plank–Kolmogorov (FPK) equation associated with the averaged Itô equations.
It is shown that the time delay in feedback control can deteriorate the control effectiveness
and cause bifurcation of stochastic jump of Duffing system. The validity of the proposed
method is confirmed by digital simulation.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that time delay in real active control systems is usually unavoidable due to the time spent in measuring
system states, on-line data processing, calculating and executing the control forces, etc. This time delay causes unsynchro-
nized application of the control force, and often leads to poor performance or instability of the controlled systems. In the past
two decades, much attention has been paid to studying the time delay problem in control community [1–3]. Time delay ef-
fects on controlled systems subject to deterministic excitation have been studied extensively [4–10]. For the case of con-
trolled systems with time delay excited by Gaussian white noise, the effects of time delay on the controlled linear and
nonlinear systems have been studied by Di Paola and coworkers [11,12] using an approach based on the Taylor expansion
of the control force and another approach to finding exact stationary solution. Recently, the response and stability of quasi-
integrable Hamiltonian systems with delayed feedback control under Gaussian white noise excitation have been studied by
Liu and Zhu [13–15] using the stochastic averaging method.
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In all these studies, the excitation of systems is purely harmonic excitation or purely random noise. However, many
mechanical and structural systems are often subjected to both random and harmonic excitations. A typical example of
such systems is uncoupled flapping motion of rotor blades of a helicopter in forward flight under the effect of atmo-
spheric turbulence [16]. To the author’s knowledge, no attention has been paid to predicting the response of strongly
nonlinear systems with delayed feedback control under combined harmonic and wide-band real noise excitations. In
the present paper, the stochastic averaging method [17] is extended to predicting the response of strongly nonlinear
Duffing system with delayed feedback bang–bang control under combined harmonic and wide-band real noise excita-
tions. The delayed feedback bang–bang control force is expressed equivalently in terms of feedback bang–bang control
force without time delay and the system is transformed into the Itô stochastic differential equations for the system
without time delay, from which the averaged Itô equations are derived by using the stochastic averaging method
and the stationary probability density of the amplitude and mean amplitude of the system are obtained from solving
the Fokker–Plank–Kolmogorov (FPK) equation associated with the averaged Itô equations. The effect of time delay in
feedback bang–bang control on the response is analyzed. Based on the stationary probability of amplitude obtained
by the proposed procedure, the effect of time delay in feedback bang–bang control on the stochastic jump of Duffing
oscillator is also studied.

2. Duffing system with delayed feedback bang–bang control

The motion equation of a nonlinearly damped Duffing oscillator with delayed feedback bang–bang control under external
harmonic excitation and external and parametric wide-band noise excitations is of the form

€X þ ðb1 þ b2X2Þ _X þx2
0X þ aX3 ¼ E cos Xt þ n1ðtÞ þ Xn2ðtÞ þ us; ð1Þ

where b1, b2, x0, a, E, X are positive constants denoting the damping coefficients, natural frequency of degenerated linear
oscillator, intensity of nonlinearity, amplitude and frequency of harmonic excitation, respectively; us ¼ uð _XsÞ ¼
�bsgnð _Xðt � sÞÞ is time-delayed feedback bang–bang control force. where s is the time delay, ‘sgn’ denotes sign function.
us has constant magnitude b, in the opposite direction of _Xs and changes direction at _Xs ¼ 0. ni(t) (i = 1, 2) are independently
stationary and ergodic processes with zero mean and rational spectral densities

SiðxÞ ¼
Di

p
1

ðx2 �x2
i Þ

2 þ 4f2
i x2

i x2
; i ¼ 1;2 ð2Þ

in which xi, fi and Di are constants. ni(t) can be regarded as the output of the second order filter €ni þ 2fixi
_ni þx2

i ni ¼
WiðtÞ; ði ¼ 1;2Þ where Wi(t) are Gaussian white noises in the sense of Stratonovich with intensities 2Di. It is assumed that
b,E, b are of the same small order.

The response of system (1) can be considered as random spread of periodic motion of degenerated system
€xþx2

0xþ ax3 ¼ 0 around (0,0) in phase plane ðX; _XÞ. The solution can be assumed in the following form [17]:

XðtÞ ¼ A cos UðtÞ
_XðtÞ ¼ �AmðA;UÞ sin UðtÞ

ð3Þ

where cosU(t) and sinU(t) are called the generalized harmonic functions,

UðtÞ ¼ WðtÞ þHðtÞ;

mðA;UÞ ¼ dW
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½UðAÞ � UðA cos UÞ�

A2 sin2 U

s
ð4Þ

and A, U, W and H are all random processes. UðxÞ ¼ x2
0x2=2þ ax4=4 is the potential energy of the system. m(A,U) is instan-

taneous frequency of the system and can be approximated by the following finite sum with a relative error less than 0.03%:

mða;uÞ ¼ m0ðaÞ þ m2ðaÞ cos 2uþ m4ðaÞ cos 4uþ m6ðaÞ cos 6u; ð5Þ

where

m0ðaÞ ¼ ðx2
0 þ 3aa2=4Þ1=2ð1� k2=16Þ;

m2ðaÞ ¼ ðx2
0 þ 3aa2=4Þ1=2ðk=2þ 3k3=64Þ;

m4ðaÞ ¼ ðx2
0 þ 3aa2=4Þ1=2ð�k2=16Þ;

m6ðaÞ ¼ ðx2
0 þ 3aa2=4Þ1=2ðk3=64Þ;

k ¼ aa2=4ðx2
0 þ 3aa2=4Þ:

ð6Þ

The average frequency x(a) = m0(a), and the following approximate relation can be used in the following averaging:

UðtÞ � xðAÞt þHðtÞ: ð7Þ
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