
Accepted Manuscript

Short communication

Polymer incompatibility as a potential tool for polyphenol recovery from olive mill wastewater

Fuad Hajji, Benno Kunz, Jenny Weissbrodt

PII:	S0308-8146(14)00089-2
DOI:	http://dx.doi.org/10.1016/j.foodchem.2014.01.068
Reference:	FOCH 15293
To appear in:	Food Chemistry
Received Date:	4 August 2013
Revised Date:	17 January 2014
Accepted Date:	20 January 2014

Please cite this article as: Hajji, F., Kunz, B., Weissbrodt, J., Polymer incompatibility as a potential tool for polyphenol recovery from olive mill wastewater, *Food Chemistry* (2014), doi: http://dx.doi.org/10.1016/j.foodchem. 2014.01.068

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Polymer incompatibility as a potential tool for polyphenol recovery from
2	olive mill wastewater
3	
4	Fuad Hajji ^{a, b,} *, Benno Kunz ^a and Jenny Weissbrodt ^{a, c}
5	
6	^a IEL Food Technology and Biotechnology, Department of Nutrition and Food Sciences, Rheinische
7	Friedrich-Wilhelms-University Bonn, Roemerstrasse 164, D - 53117 Bonn, Germany.
8	^b German Institute of Food Technologies, Profvon-Klitzing-Str. 7, 49610 Quakenbrueck, Germany.
9	^c Symrise AG, Muehlenfeldstrasse 1, 37603 Holzminden, Germany.
10	
11	Corresponding Author: * f.hajji@dil-ev.de; New affiliation: ^{b, c}
12	
13	Abstract
14	Experiments were designed and preformed in consideration of polymer type (proteins, i.e. caseinate
15	and ovalbumin, and polysaccharides, i.e. alginate and methylcellulose), charge character and
16	polysaccharide concentrations, intended to understand how the polymer properties determine both
17	phase separation and polyphenol partitioning from olive mill wastewater (OMW). The highest yield
18	of polyphenols (Y_{BP} = 92.9 %) was achieved in an aqueous two-phase system (ATPS) using an
19	ovalbumin-methylcellulose system (OMCS) in comparison to ATPS with caseinate-alginate system
20	(CAS; $Y_{BP} = 85.8 \%$) or caseinate methylcellulose system (CMCS; $Y_{BP} = 74 \%$). The performance of
21	CMCS for the ATPS partitioning of polyphenols in OMW was found to depend on the addition of salt
22	(sodium chloride). The use of centrifugation as assistive technology appears to be necessary for the
23	polyphenol partitioning in ATPS using OMCS. In contrast to these polymer systems, CAS caused a
24	rapid ATPS without resorting to centrifugation and salt, mainly because of strong electrostatic
25	repulsion between alginate and caseinate. In this regard, CAS in phase-separated OMW obtained a 1

Download English Version:

https://daneshyari.com/en/article/7597875

Download Persian Version:

https://daneshyari.com/article/7597875

Daneshyari.com