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Abstract

We study the foundation and limitations of the statistical reaction theory. In particular, we focus our attention to the
question of whether the rate constant can be defined for nonergodic systems. Based on the analysis of the Arnold web in the
reactant well, we show that the survival probability exhibits two types of behavior: one where it depends on the residential
time as the power-law decay and the other where it decays exponentially. The power-law decay casts a doubt on definabil-
ity of the rate constant for nonergodic systems. We indicate that existence of the two types of behavior comes from sub-
diffusive motions in remote regions from resonance overlap. Moreover, based on analysis of nonstationary features of tra-
jectories, we can understand how the normally hyperbolic invariant manifold (NHIM) is connected with the Arnold web.
We propose that the following two features play a key role in understanding the reactions where ergodicity is broken, i.e.,
whether the Arnold web is nonuniform and how the NHIM is connected with the Arnold web.
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1. Introduction

Reaction processes are ubiquitous from microscopic phenomena such as nuclear and chemical reactions
to macroscopic ones such as population dynamics. In the study of reaction processes, the rate equation such
as

d

dt
P ðtÞ ¼ �kP ðtÞ ð1Þ
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is frequently used in the phenomenological treatment, where the rate constant k is supposed to describe how
the density P(t) of the reactant changes in unit time. Then, P(t) obeys the exponential decay, and the inverse of
the rate constant gives the characteristic time scale of the reaction processes. As for the foundation of the rate
equation, it is implicitly supposed that the reaction processes take place statistically. For unimolecular reac-
tion processes in microscopic phenomena, the Rice–Ramsperger–Kessel–Marcus (RRKM) formula [1] has
been employed to estimate the rate constant k. The RRKM theory requires the following two assumptions:
(1) The no-recrossing boundary exists between the reactant and the product, and chemists call it the transition
state (TS). (2) The processes within the reactant well are ergodic so that the trajectories lose their memories of
initial conditions when they exit from the well [1]. Given a distribution of initial conditions within the reactant
well, the first assumption means that the reaction rate can be estimated by simply counting the number of tra-
jectories which cross the TS from the reactant to the product. The second assumption implies that the reaction
rate thus estimated does not depend on a specific distribution of initial conditions within the well. In order for
the second assumption to hold, the characteristic time scale for the system to react must be much longer than
that to explore the phase space within the well. Then, starting from any distribution, it will spread into the
whole region of the phase space within the well, before some of the trajectories go over the TS. Thus, the rate
becomes independent of how we choose the distribution of initial conditions.

Recently, however, theoretical [2–7] and experimental studies [8–11] have cast a doubt on the assumptions
underlying the statistical reaction theory (see [12] for a review). There are two problems concerning the
assumptions of the statistical reaction theory: (1) whether we can have the firm mathematical foundation
of TSs, and (2) what if the processes within the well are not ergodic enough to guarantee the existence of
the rate constant. As for the first question, it was solved by the approach based on the geometric structures
in the phase space called normally hyperbolic invariant manifolds (NHIMs). By applying the Lie canonical
perturbation theory (LCPT) [13,14] to the potential saddles of the index one, we can identify the geometric
structures inherent to the saddle region, at least in the energy regime close to that of the saddle point [15].
Up to now, versatility of the no-return TSs has been well established in isomerization reactions of 6-atom clus-
ters [16] and HCN [17,18], ionization of a hydrogen atom in crossed electric and magnetic fields [19], and also
in the escape of asteroids from Mars [6]. A NHIM is a manifold where the absolute values of the Lyapunov
exponents along its normal directions are much larger than those along its tangential directions [20–22]. Its
stable/unstable manifolds consist of those orbits which asymptotically approach or leave the NHIM, respec-
tively. For saddles of the index one, these geometric structures enable us to identify the one-dimensional reac-
tion coordinate as the normal direction to the NHIM, and thereby to define the TS as the dividing
hypersurface of co-dimension one locally near the saddle. The TS thus defined is free from the problem of
recrossing orbits, and can decompose the phase space into the distinct regions of the reactants and the prod-
ucts [19,23–25] (see also recent reviews [26–29] and the book [30]). Moreover, the stable/unstable manifolds of
the NHIM provide us with a reaction conduit through which all the reactive trajectories pass from the reactant
to the product or vice versa. Thus, these manifolds offer a crucial clue to understand how reacting systems end
up with the desired state. This is essential to study the question of how we can control the reaction.

However, only a few studies have considered the geometrical structure of the phase space inside the poten-
tial well. Recently, it is shown that the volume of phase space which contributes to the reaction is represented
by the phase space average of the residential time, i.e., the duration for which each trajectory resides in the well
[7]. Contrary to the RRKM formula, this relation holds irrespective of whether the reaction is ergodic or not.
Then, the phase space average of the residential times in general depends on the distributions of initial con-
ditions, leading to dependence of reaction rates on the initial conditions. Moreover, the power-law decay of
the survival probability has been observed experimentally [11]. Recently, we have also obtained numerical
results of classical mechanics showing that isomerization processes in HCN exhibit the power-law decay of
the survival probability [31]. These results lead us to the following question; To what extent can we define
the rate constant? This question is closely related to the problem of whether the transport coefficient can be
defined by the linear response theory, when the system exhibits the long time tail [32–34]. In other words, when
ergodicity is not satisfied, we face this problem. The long time tail is found in numerical simulations of Ham-
iltonian systems [35,36], water clusters [37], and ferromagnetic spin systems [38]. Moreover, recent experiments
show that proteins do exhibit long time memory [39]. Thus, the question of whether the rate constant can be
defined or not has a far reaching importance in general.
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