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ABSTRACT To satisfy the interfacial shear force continuity conditions, a new model is proposed
for the two-layer composite beam with partial interaction by modifying Reddy’s higher order beam
theory. The governing differential equations for free vibration and buckling are formulated using
the Hamilton’s principle, the natural frequencies and axial forces are thus analytically obtained
by Laplace transform technique. The analytical results are verified through the comparison with
those of several other models common in use; and the presented model is found to be a finer one
than the Reddy’s. A parametric study is also performed to investigate the effects of geometry and
material parameters.
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I. Introduction
Composite beams with interlayer slip are becoming increasingly widespread in many engineering

fields, because of appropriate usage of the mechanical properties of each component, e.g. the high
tensile strength of steel and the high compressive strength of concrete in the steel-concrete composite
beams have been effectively utilized. Usually, the sub-layers of composite beams are connected by
flexible shear connectors such as headed studs, interlayer slip may thus occur even subject to small
loads. Hence, in the early days Newmark et al.[1] proposed a model for the two-layer composite beam
with partial interaction based on the Euler-Bernoulli beam theory (EBT), where the shear strain of
each sub-layer was neglected and the displacement was assumed small. To capture more fidelity of the
structure and the shear effects which the EBT can’t cope with, more refined composite beam kinematics
were proposed subsequently, e.g. studies[2–8] focused on the first order shear deformation of composite
beam components. Based on the first order shear deformation theory (FSDT), various analyses have
been carried out on the mechanical behaviors of composite beams, including static response[9–13], free
vibration[7,8] and buckling[2,3,8]. However, what has to be noted is that the shear correction factor
introduced by the Timoshenko beam theory (TBT) is attributed to the geometry of cross-section of
each sub-layer as well as the shear stress on the cross-section[14], i.e. the factor is no longer constant
during the deformation of composite beams. To overcome this drawback, it is a good choice to use
higher order shear deformation theory (HSDT) for its free requirement on the shear correction factor.
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Therefore, the HSDT has received much attention[14–16] in formulating the sub-layers, by making use of
its elaborate kinematics. And it is much finer than the FSDT-based kinematcis. For example, the Reddy’s
HSDT[17] assumes that the axial displacement of cross-section varies over the beam depth as a cubic
polynomial and a quadratic distribution of shear stress along the beam depth can be captured. Utilizing
this type of HSDT[17], Chakrabarti et al.[15,16] studied the static response of two-layer composite beams
within linear elastic range; and Chakrabarti et al.[14] extended it to the range of dynamics problems
using the finite element method (FEM). He and Yang[18,19] modified Reddy’s HSDT[14–16] to ensure the
satisfaction of interfacial shear force continuity condition of two-layer composite beams, and the static
and buckling analyses were carried out using the exact method[19] and the FEM[18], respectively. In
addition, based on two types of HSDTs, Subramanian[20] developed a displacement-based finite element
and an analytical procedure for the free vibration analysis of composite laminated beams; and Li et
al.[21] developed an exact finite element to conduct the free vibration analysis of composite laminated
beams using the hyperbolic shear deformation theory.

Despite the convenience and wide applicability of the FEM in analyzing composite structures, the
exact closed form solutions are still required for the analysis as a benchmark. Therefore, analytical
solutions for composite beams have been proposed. Based on the classical Newmark model[1], a large
number of researchers[22–24] analytically studied the free vibration characteristics of two-layer composite
beams within linear elastic range; many scholars[24–26] also analytically explored the stability character-
istics of two-layer composite columns. To evaluate the shear effects, plenty of investigators[2,3,5,7,8,27]

obtained the exact analytical solutions for static, free vibration and buckling problems within linear
elastic range. However, to the best knowledge of the authors, studies on the exact free vibration and
buckling analyses of two-layer composite beams using the HSDT are quite few, due to the increasing
complexity in the mathematical models introduced by the HSDT.

The main objective of this study is to improve the aforementioned studies of Refs.[18,19]. In this
study, the modified Reddy’s HSDT[18,19] is used in the modeling, and the dynamic partial differential
equations governing the higher order shear deformation of two-layer composite beams are formulated
by the Hamilton’s principle. A novel exact analytical method based on Laplace transform is initially
developed to solve the boundary value problems of complex ordinary differential equations (ODEs) for
free vibration and buckling analyses. Compared with the FEM, the proposed analytical method is free
from convergence problem, which is inevitable for the FEM due to mesh-dependence. In addition, unlike
the Newton-like iteration method, the bisection method is part of the proposed one, and is thus stable
for the solution of transcendental equations for eigenvalues. With the help of the proposed method, the
troublesome procedure of decoupling in conventional solving techniques is avoided; and it is potentially
capable of solving other mathematical problems governed by the ODE systems. The exact results are
verified through the comparison with the results of models based on the two-dimensional theory, which
are TBT and Reddy’s HSDT. Four combinations of boundary conditions common in engineering are
considered in the numerical verification, and the reliability of the presented mathematical model and
the exact solving method are demonstrated by the excellent agreement of performances with the two-
dimensional model. Moreover, parametric studies on the slenderness ratio of composite beams, stiffness
of shear connectors and different boundary conditions are conducted to examine the shear effects on
the dynamic and stability characteristics.

II. Formulations
2.1. Description of problems and assumptions

A straight, planar, two-layer composite beam is being considered with different cross-sections, ma-
terials, and flexible shear connectors uniformly smeared over the interface. Sub-layers of the entire span
L, as shown in Fig.1(a), are marked with c and s, respectively. The layers c and s are respectively placed
in the Cartesian coordinate systems oxyc and oxys originated from the centroid of each layer at the
left end of the span. These two centroid axes and the shear interface divide the overall depth of the
composite beams into four parts, i.e. h1, h2, h3 and h4. The axial displacement assumption for each layer
is shown in Fig.1(b), where uc0 and us0 indicate the axial displacements at the centroids of cross-sections
c and s, respectively; and ucs indicates the interfacial slip between the two layers. Parameters θc and
θs represent the tangential slopes at the centroids of cross-sections c and s, respectively.
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