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Abstract

A minimal (low-dimensional) dynamical model of the sawtooth oscillations is presented. It is assumed that the sawtooth
is triggered by a thermal instability which causes the plasma temperature in the central part of the plasma to drop sud-
denly, leading to the sawtooth crash. It is shown that this model possesses an isolated limit cycle which exhibits relaxation
oscillation, in the appropriate parameter regime, which is the typical characteristics of sawtooth oscillations. It is further
shown that the invariant manifold of the model is actually the slow manifold of the relaxation oscillation.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Sawtooth oscillations [1], commonly observed in current carrying, magnetically confined plasmas, are
believed to be the result of resistive internal kink mode, i.e., (m = 1,n = 1) oscillation. These oscillations
are characterized by a relatively slow rise of the electron temperature in the central region of the plasma col-
umn followed by a rapid drop (the crash). This is a typical nature of a stick-slip or relaxation oscillation [2],
where the stress is slowly built up and then suddenly released after a certain threshold, observed in many other
dynamical systems, e.g., Portevin–Le Chatelier effect [3], a matter of interest in material science.

In this work, we propose a minimal (low-dimensional) dynamical model for sawtooth oscillation in tokam-
aks, based on a transport catastrophe due to a thermal instability [4]. Low-dimensional or low-order dynam-
ical system, i.e., a system of coupled ordinary differential equations, has several advantages over a detailed
physical model of the actual system in the understanding of the global behaviour of the system. These models
become powerful as they are supported by well developed mathematical theories which can be used to gain
insight into the qualitative behaviour of the system such as bifurcation and stability [5]. Several examples
of these models can be found in the context of understanding the behaviour of fusion plasmas ranging from
the edge localized modes (ELM) [6] to plasma turbulence [7].
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In spite of a great deal of experimental and theoretical research, the sawteeth in tokamaks continue to be a
subject of exploration. For example, though numerical simulations [8] and some experimental results [9] sug-
gest total reconnection within the safety factor q = 1 surface during a sawtooth crash, there are also experi-
mental evidences [10], which indicate that q remains well below unity during a sawtooth cycle. Apparently,
there have been several important contributions to the understanding of the sawtooth dynamics, e.g., sawteeth
with partial reconnection, based on turbulent transport [13]. A Taylor relaxation model of the sawteeth has
also been considered by Gimblett and Hastie [14].

Here, we primarily focus on the dynamics of sawtooth oscillations based on a low-dimensional dynamical
model. We rigorously prove that this dynamical model of the sawteeth based on thermal instability, besides
capturing the important physical aspects, does exhibit well defined, isolated limit cycle oscillations, character-
istics of self-excited relaxation phenomena like the sawteeth. Alternatively, several authors have proposed
Hamiltonian models [15–17], which however can have infinite number of periodic solutions depending on
the starting points of the evolution with the same set of physical parameters, which is rather inconsistent with
the universal nature of sawteeth for similar experimental conditions. These models, despite having dissipation,
possess a conserved quantity much like the Hamiltonian of a conjugate system.

In Section 2, we formulate the minimal dynamical model. In Section 3, we analyse the bifurcation and sta-
bility of the system, pointing out the existence of an isolated and unique limit cycle and its global stability. We
complete this section by proving the uniqueness of the limit cycle where we demonstrate the existence of an
algebraic equation for the limit cycle. Next, in Section 4, we address the issue of relaxation oscillation and
explore the parameter regime where the limit cycle exhibits sawtooth-like oscillations. In Section 5, with
the help of a renormalization group method, we prove that the invariant manifold of the dynamical system
is indeed the slow manifold of the relaxation oscillation. In the Appendix, we outline the Hamiltonian
approach to this dynamical model.

2. Dynamical modeling of sawtooth oscillations

Typical sawtooth oscillations in small tokamaks (R0 = 1 m) exhibit linear growth of central temperature
with few milliseconds of duration and rapid crash time of � several microseconds, in the Ohmic heating phase
[18,19,10]. Although there are several other exotic cases, viz., giant and monster sawteeth [11,12], we shall limit
our discussion to the simpler type of sawteeth with a linear rise of the electron temperature. The dynamical
system, controlling the sawtooth oscillations of the central electron temperature, then can be written as
[4,15,20]
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where Te is the central electron temperature expressed in energy units, A is the amplitude of the oscillation,
mL(A,Te) is the rate of temperature redistribution, and c(Te) is the growth rate of the relevant mode. The col-
lisional parallel conductivity rk / T 3=2

e . In the above equations, the particle density n remains nearly constant
during the sawtooth cycle, which is consistent with experimental observations. We further note that in the
cases of sawtooth oscillations, we are going to consider, the classical diffusion time [21] for the plasma current
within the q 6 1 volume, sJ = (r1/de)

2/mei (where r1 is the radius of the q = 1 surface, de is the plasma skin
depth, and mei is the electron–ion collision frequency), is one order of magnitude higher than the sawtooth rep-
etition time. For example, in the Alcator C-Mod (MIT) machine, typically, sJ � 80–400 ms for Ohmic regimes
[22], whereas the sawtooth period (crash time being negligibly smaller than the period) sst � 4 ms. Therefore it
can be safely assumed that the current redistribution does not play any significant role and the corresponding
Ek remains constant. We further assume that the pressure redistribution parameter mL(A,Te) can be expressed
with simple power laws, i.e., mLðA; T eÞ / T a

eAr, where a and r are arbitrary constants.
With these considerations, we note that the second term in Eq. (1) is responsible for the sawtooth crash.

However, in absence of this term the general solution of Eq. (1) is explosive. In particular, it should include
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