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a b s t r a c t

We introduce stochastic models of chemotaxis generalizing the deterministic Keller–Segel
model. These models include fluctuations which are important in systems with small par-
ticle numbers or close to a critical point. Following Dean’s approach, we derive the exact
kinetic equation satisfied by the density distribution of cells. In the mean field limit where
statistical correlations between cells are neglected, we recover the Keller–Segel model gov-
erning the smooth density field. We also consider hydrodynamic and kinetic models of
chemotaxis that take into account the inertia of the particles and lead to a delay in the
adjustment of the velocity of cells with the chemotactic gradient. We make the connection
with the Cattaneo model of chemotaxis and the telegraph equation.
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1. Introduction

In biology, many organisms (bacteria, amoebae, cells,. . .) or social insects (like ants, swarms,. . .) interact through the pro-
cess of chemotaxis [1–3]. Chemotaxis is a long-range interaction that accounts for the orientation of individuals along chem-
ical signals that they produce themselves. Famous examples of biological species experiencing chemotaxis are the slime
mold amoebae Dictyostelium discoideum, the flagellated bacteria Salmonella typhimurium and Escherichia coli, the human
endothelial cells etc. When the interaction is attractive, chemotaxis is responsible for the self-organization of the system into
coherent structures such as peaks, clusters, aggregates, fruiting bodies, periodic patterns, spirals, rings, spots, honeycomb
patterns, stripes or even filaments. This spontaneous organization has been observed in several experiments [4–16] and
numerical simulations [17–33]. Chemotactic attraction is therefore a leading mechanism to account for the morphogenesis
and self-organization of biological systems. For example, it has been advocated to explain aggregation patterns in bacteria,
tissue organization during embryonic growth, cell guidance, fish skin pigmentation patterning, angiogenesis in tumour pro-
gression and wound healing, formation of plaques in Alzheimer’s disease, dynamics of blood vessel formation etc [24,34]. It
is fascinating to realize that the self-organization of chemotactic species in biology shares some analogies with the self-orga-
nization of galaxies in astrophysics and large-scale vortices (like Jupiter’s great red spot) in two-dimensional turbulence.1 A
first successful model of chemotactic aggregation is provided by the Keller–Segel (KS) model [41] introduced in 1970. The stan-
dard KS model can be written as
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1 These analogies are intrinsically due to the long-range attractive nature of the interaction. In particular, self-gravitating systems, 2D vortices and

chemotactic species interact through a field produced by the distribution of particles via a Poisson equation (or its generalizations). Furthermore, the process of
self-organization is described by relatively similar relaxation equations corresponding to nonlinear mean field Fokker–Planck equations [35]. Therefore, self-
gravitating systems, 2D vortices and chemotactic species share many analogies despite their very different physical nature. These striking analogies have been
emphasized by the author in several papers [36–40,35].
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It consists in two coupled differential equations that govern the evolution of the density of cells (or other biological entities)
qðr; tÞ and the evolution of the secreted chemical cðr; tÞ. The first Eq. (1) is a drift-diffusion equation. The cells diffuse with a
diffusion coefficient D� and they also move in a direction of a gradient of the chemical (chemotactic drift). The chemotactic
sensitivity v is a measure of the strength of the influence of the chemical gradient on the flow of cells. The coefficient v can
be positive or negative. In the first case (chemoattraction), the particles climb the chemical gradient and form clusters. In the
second case (chemorepulsion), they descend the chemical gradient and repell each other. In that case, the chemical acts like a
poison. The second Eq. (2) in the KS model is a reaction-diffusion equation. The chemical is produced by the bacteria with a
rate h and is degraded with a rate k. It also diffuses with a diffusion coefficient Dc. When chemotactic attraction prevails over
diffusion, the KS model describes a chemotactic collapse leading to aggregates or Dirac peaks. There is a vast literature on this
subject. We refer to Perthame [42] for numerous references in applied mathematics and to Chavanis [43] for additional ref-
erences in physics.

The first equation of the KS model can be interpeted as a mean-field Smoluchowski equation describing a system of
Brownian particles in interaction. On the other hand, in the limit of large diffusivity of the chemical, we can make a qua-
si-stationary approximation oc=ot ’ 0 in the second equation and obtain the screened Poisson equation. We are led therefore
to the simplified Keller–Segel model

oq
ot
¼ r � ðD�rq� vqrcÞ; ð3Þ

Dc � k2
0c ¼ �kq; ð4Þ

where we have set k2
0 ¼ k=Dc and k ¼ h=Dc. In the absence of degradation of the chemical (k0 ¼ 0), the field equation (4) re-

duces to the Poisson equation Dc ¼ �kq (see [44] and Appendix C of [32] for a precise justification of these approximations).
In that case, the Keller–Segel (KS) model becomes isomorphic to the Smoluchowski–Poisson (SP) system

oq
ot
¼ r � 1

n
kBT
m
rqþ qrU
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; ð5Þ

DU ¼ SdGq; ð6Þ

describing a system of overdamped self-gravitating Brownian particles in the mean field approximation
[45,25,28,30,46,31,47,43,48,49]. We have the correspondances: D� ¼ kBT=nm, v ¼ 1=n, c ¼ �U, k ¼ SdG. In particular, the
concentration of the secreted chemical cðr; tÞ ¼ �Uðr; tÞ in biology plays the role of the gravitational potential (with the
opposite sign) in astrophysics.2 More generally, when we consider a system of Brownian particles interacting via an arbitrary
binary potential uðr� r0Þ and make a mean-field approximation [53–55], we obtain the mean-field Smoluchowski equation
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m
rqþ qrU
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ð7Þ

Uðr; tÞ ¼
Z

qðr0; tÞuðr� r0Þ;dr0: ð8Þ

The main difference between models (1)–(2) and (7)–(8) comes from the equation for the field cðr; tÞ or Uðr; tÞ. Eq. (2) is non-
markovian since the concentration of the chemical cðr; tÞ at time t depends on the concentration of the bacteria and of the
chemical at earlier times. By contrast, Eq. (8) is markovian since the potential Uðr; tÞ is assumed to be instantaneously pro-
duced by the distribution of particles.

It is important to note that the Keller–Segel model is a mean field model which ignores fluctuations. This implicitly as-
sumes that the number of cells N ! þ1 and that we are far from a critical point. Now, in biology, the number of particles
in the system can be relatively small. Furthermore, from the statistical physics viewpoint, it is natural to investigate the role
of fluctuations during chemotaxis. In order to go beyond the mean field approximation, some authors [17,56,57,32] have
proposed to return to a corpuscular description of the dynamics and to describe the motion of the particles (chemotactic
species or ‘‘active” walkers) by N coupled stochastic Langevin equations of the form

dri

dt
¼ vrcdðriðtÞ; tÞ þ

ffiffiffiffiffiffiffiffi
2D�

p
RiðtÞ; ð9Þ

ocd

ot
¼ DcDcd � kcd þ h

XN

i¼1

dðr� riðtÞÞ; ð10Þ

2 One great achievement of Keller and Segel [41] was to interpret slime mold aggregation as a manifestation of a fundamental instability in a uniform
distribution of amoebae and acrasin (chemoattractant). As noticed in [50,51], this instability is closely related to the Jeans gravitational instability in
astrophysics [52].
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