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a b s t r a c t

Quantitative analysis of food adulterants is an important health and economic issue that needs to be fast
and simple. Spectroscopy has significantly reduced analysis time. However, still needed are preparations
of analyte calibration samples matrix matched to prediction samples which can be laborious and costly.
Reported in this paper is the application of a newly developed pure component Tikhonov regularization
(PCTR) process that does not require laboratory prepared or reference analysis methods, and hence, is a
greener calibration method. The PCTR method requires an analyte pure component spectrum and non-
analyte spectra. As a food analysis example, synchronous fluorescence spectra of extra virgin olive oil
samples adulterated with sunflower oil is used. Results are shown to be better than those obtained using
ridge regression with reference calibration samples. The flexibility of PCTR allows including reference
samples and is generic for use with other instrumental methods and food products.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The adulteration of food products is of primary concern for
consumers, food processors, regulatory agencies, and industries.
Adulteration typically involves replacing or diluting high-cost
ingredients with less expensive ones. Thus, once a food product
is identified as being adulterated and with what substance, rapid
quantitative analysis of the adulterant is needed.

As an example, it is well documented that to increase profits,
extra virgin olive oil (EVOO) is adulterated with lower grade olive
oil and/or less costly edible oils such as sunflower or corn oils. Be-
cause of the importance of the EVOO adulteration problem, numer-
ous studies have shown that multivariate calibration methods in
conjunction with spectroscopic measurements, can quantitate for
adulterant concentrations in EVOO (Baeten, Meurens, Morales, &
Aparicio, 1996; Davis, McIntyre, & Morgan, 2000; Gurdeniz & Ozen,
2009; Heise, Damm, Lampen, Davis, & McIntyre, 2005; Lai,
Kemsley, & Wilson, 1995; Lerma-García, Ramis-Ramos, Herrero
Martínez, & Simó-Alfonso, 2010; López-Díez, Bianchi, & Goodacre,
2003; Poulli, Mousdis, & Georgiou, 2006, 2007; Küpper, Heise,
Lampen, Davis & McIntyre, 2000; Yang and Irudayaraj, 2001). In
these studies, calibration samples are formed by adding the

identified adulterant over a range of concentrations to EVOO sam-
ples from one or more geographical region, growing season, and/or
cultivar. These samples are then spectrally measured. A multivari-
ate calibration model is formed using a method such as partial
least squares (PLS) or ridge regression (RR) (Hastie, Tibshirani, &
Friedman, 2009; Kalivas, 2009; Næs, Isaksson, Fern, & Davies,
2002). This model is then used to predict adulterant oil concentra-
tions in new samples. This approach is successful as long as new
samples are from the same population used to form the calibration
model, i.e., the new samples have the same matrix effects. Addi-
tionally, numerous samples need to be prepared causing additional
time and costs before the quantitative analysis can be performed.

In this EVOO example, and in other food analysis cases, spectro-
scopic analysis has significantly improved the green factor of anal-
yses compared to other methods requiring stabilization in solvents,
extractions, and treatment with chemicals (Zandomeneghi, Carbo-
naro, & Caffarata, 1996). However, even with spectroscopic meth-
ods, numerous calibration samples requiring tedious laboratory
work and often chemicals still need to be prepared. Recent studies
have shown that it is possible to form a calibration model without
reference samples (Boulet & Roger, 2010; Marbach, 2002, 2005;
Ottaway, Farrell, & Kalivas, 2013). Thus, significant steps have been
made towards providing greener chemical analysis including the
potential for analysis of food adulterants. In the non-food analysis
published studies, the calibration model is formed using an analyte
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pure component spectrum and non-analyte spectra, i.e., samples
where the analyte amount is known to be zero. In the most recent
work of Ottaway et al. (2013), a dynamic weighting scheme is
developed to obtain a balance between model prediction accuracy,
model shrinkage (model vector size and hence complexity), and
orthogonality to the non-analyte matrix effects (non-analyte spec-
tra are predicted by the model to have zero analyte). This process
of forming calibration models with the three way balance is named
pure component Tikhonov regularization (PCTR) and is presented
in this paper as a viable calibration method for food adulterants
using EVOO as the example. Additionally, PCTR is easily adaptable
to conditions that alter the sample matrix such as a new growing
season or geographical region.

2. Mathematics

2.1. Multivariate calibration

In quantitative food adulteration, spectroscopic multivariate
calibration relates the concentration of the adulterant y to the
measured spectra X by:

y ¼ Xbþ e ð1Þ

where y denotes an m � 1 vector of quantitative analyte values for
m reference samples, X represents the m � n matrix of spectra mea-
sured at the n wavelengths, b signifies the n � 1 vector of model
vector of coefficients to be estimated, and e symbolizes the m � 1
vector of normally distributed errors with mean zero and covari-
ance matrix r2I with I representing the m �m identity matrix.
The relationship described in Eq. (1) assumes y and X are column-
wise mean centered or constrained to the origin and hence, no
y-intercept term. The estimated regression vector symbolized as
b̂, is commonly computed by PLS or RR. Once b̂ has been estimated,
it can then be used to predict future sample spectra provided the
new food sample matrix is part of the calibration domain. As previ-
ously noted, the samples making up X and y need to characterize
the sample matrix and measurement conditions (chemical,
physical, instrumental, and environmental) of any sample to be
predicted. If the conditions changes, either new samples are needed
or some sort of calibration maintenance is required (Brown, 2009;
Kalivas, 2012).

In order to accomplish a multivariate calibration using Eq. (1), a
large number of samples are commonly required to effectively
characterize the analyte and matrix effects, i.e., food product vari-
ety, growing season, and/or geographical region, etc. This calibra-
tion process can be time consuming, require chemical
treatments, and costly. Therefore, an objective of multivariate cal-
ibration is to maintain low prediction errors and simultaneously,
limit the number of reference samples.

As with any vector, there are two features of the calibration
model vector b̂ that are key. One is the model complexity charac-
terized by the Euclidean length represented by kb̂k for the L2

norm. The other is the model vector direction which in conjunc-
tion with the magnitude, affect the accuracy of sample predic-
tions made with the model vector. Generally, for a given X and
y data set, the greater the model size, the more complex (and
potentially overfitted) the calibration model. Conversely, a model
with too much shrinkage is too small in size and the model is
underfitted with poor predictive accuracy. The tradeoff in model
direction and shrinkage is characterized by the bias/variance
tradeoff for the model prediction. As noted previously, calibration
models are commonly estimated using PLS or RR. These methods
are termed biased as each requires selection of a meta-parameter
(tuning parameter) to balance the bias/variance tradeoff, i.e., the
direction and magnitude are balanced by the respective tuning

parameter value (Kalivas & Palmer, 2013). In conjunction with
magnitude and direction of the model vector, another model
vector feature is the orthogonality to the current non-analyte
sample matrix and/or measurement conditions (Brown, 2004;
Skibsted et al., 2005; Zeaiter, Roger, & Bellon-Maurel, 2005). Pre-
sented next is PCTR that provides a flexible method to balance
model size and direction with the degree of model orthogonality
to the non-analyte space while simultaneously sustaining accu-
rate predictions. To accomplish the balance, PCTR uses a pure
component analyte spectrum and non-analyte spectra. The flexi-
bility of PCTR also allows including reference samples if such
samples are available.

2.2. Pure component TR (PCTR)

For a measured spectrum x and assuming a linear Beer–Lambert
law type relationship is valid, then x can be expressed as:

xt ¼ yakt
a þ yt

NKN þ rt ð2Þ

where, in the spectroscopic situation, ya and ka respectively
denote the analyte concentration and pure component analyte
spectrum at unit concentration, yN and KN symbolize the interfer-
ent concentrations and pure component non-analyte spectra at
unit concentration as rows in KN, and r represents the random
spectral noise. The non-analyte spectra in KN can be pure compo-
nent interferent spectra as well as spectra representing instrumen-
tal and/or environmental sources affecting x such as scatter,
baseline shifts, background, temperature, etc., (all the components
of x not due to the analyte). While pure component interferent
spectra are sometimes obtainable, other pure component non-ana-
lyte spectra making up KN are usually not. Additionally, the
amount of respective non-analyte components in samples are
typically not known. If the spectra are scaled by the respective
quantities in yN, then Eq. (2) becomes:

xt ¼ yakt
a þ 1tNþ rt ð3Þ

where the 1 signifies a vector of ones with as many ones as there are
spectra in N. In food adulteration, ka would be the pure component
spectrum of the adulterant and spectra for N would simply be the
spectra of the food item without the adulterant.

Prediction for ya, expressed as ŷa, is computed by multiplying x
in Eq. (2) by an estimated model vector b̂ written as:

ŷa ¼ xtb̂ ¼ yakt
ab̂þ 1tNb̂þ rtb̂ ð4Þ

Based on Eq. (4), three conditions need to be satisfied in order to
obtain an accurate prediction with ŷa ¼ ya. These conditions are:
(1) kt

ab̂ ¼ 1 (minimum bias), (2) Nb̂ ¼ 0 (orthogonality), and (3)
rtb̂ ¼ 0 (orthogonality and/or low model complexity). Unfortu-
nately, not all three conditions can usually be simultaneously
satisfied and a compromise is needed in forming the model from
Eq. (1). Additionally, depending on how much the matrix effects,
represented by the non-analyte spectra in N, for the new sample
deviate from the current matrix effects present in X used to form
the model with Eq. (1), will dictate the level of accuracy in the pre-
diction from Eq. (4), i.e., the success of the prediction depends on
the analysis (sample) specific situation matrix matching the cali-
bration matrix span (Ottaway et al., 2013).

In order to balance the three conditions, a variant of Tikhonov
regularization (TR) was recently developed named pure compo-
nent TR (PCTR). The PCTR approach incorporates and balances
these tradeoffs directly in the minimization expression:

minðkkt
ab� 1k2

2 þ g2kbk2
2 þ k2kNb� 0k2

2Þ ð5Þ

with the solution
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