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a b s t r a c t

Two largely different theories, i.e. the geometric nonlinear eigenvalue theory and the geo-
metric nonlinear critical point theory, of the stability analysis for truss structures are
reviewed by the authors. In this paper, it is pointed out through numerical examples as
well as thoroughly theoretical investigations that the eigenvalue theory leads to mistak-
enly very large solutions of critical load. Though it is correct in theory, the applicability
of the critical point theory was inadequately extended to all shallow trusses. To overcome
the shortcomings of the stability theories, the authors present two theories of their own
with two new approaches for geometric nonlinear analysis and for finding the critical loads
for shallow truss structures. Several conclusions are drawn, including: (1) the geometric
nonlinear eigenvalue theory is mistaken and (2) the capabilities of various theories are
discussed.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

So far there are four theories have been presented regarding stability problems of truss structures: (1) the geometric non-
linear eigenvalue theory [1,2]; (2) the geometric nonlinear critical point theory [3,4] named by the authors after the word
critical point in Ref. [3]; (3) the linear Eulerian theory [5,6]; and (4) the geometric nonlinear Eulerian theory [7,8].

The history of the geometric nonlinear eigenvalue theory can be dated back to long time ago [2] and has been used in
many publications e.g. [9–12]. In 1993, the first author used it to compute the critical loads of some examples of truss struc-
ture [5]. The results showed that the critical loads were much larger than those obtained by the linear Eulerian theory pre-
sented by the first author. It will be analyzed in detail in Section 2 and 3 of the present paper that this theory is mistaken.
Similar comment as the abovementioned can also be seen in Ref. [4].

The critical point theory was presented in 1985 and 2000 in Refs. [3,4], respectively. However, it is found that the solution
method is too complicated to use in numerical computation. Also, the results of critical loads of a four-bar truss and of a two-
bar truss were large and consequently violated the Eulerian stability condition.

The linear Eulerian theory was firstly presented by the first author in 1993 [5]. In this theory, the Euler stability formula
from the mechanics of materials is used as the criterion for stability of all the general truss structures. The structural analysis
is carried out in the scope of small deformation. In more details, if all members are locally stable the truss is certainly globally
stable; the global buckling of the truss is due to the accumulation of local buckling of various members to turn the truss into
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a mechanism. The correctness of this conclusion was proved by theoretical analysis, calculation of practical examples and
engineering practice. This theory possesses two objects for the stability analysis of the general trusses: (1) computing the
critical load when the sectional areas are given and (2) computing the critical solution of stability, when the applied load
is given. The approach for computing the critical load will be described in Section 3 of this paper.

The geometric nonlinear Eulerian theory, on the other hand, uses the Euler stability formula of compressed member for
shallow truss structures for which large deformation must be taken into account. In more details, it is the same as the linear
Eulerian theory of stability. The approach for finding the critical load will be presented in Section 4 of this paper.

The latter two theories [5–8] are recently proposed by the authors based on the formula of stability of compressed mem-
ber in strength of materials and are demonstrated being able to conform the requirements of structures and the practice of
stability in engineering.

In this paper, the authors intend to reveal the difference, applicability, existing problems as well as the mistake in the four
theories, through two aspects of comparisons for the critical load and the critical solution of stability—optimum design of
cross-sectional area with stability constraint. Theoretical analysis and comparison of numerical results of examples for crit-
ical load in this paper demonstrate that the conventional geometric nonlinear eigenvalue theory is wrong. The differences for
critical load among the four theories in some examples, while the applicability and existing problems for them are also
provided.

2. Mistake of geometric nonlinear eigenvalue stability theory

2.1. Brief review of the theory

The geometrical nonlinear eigenvalue stability theory can be deduced from the principle of minimum total potential en-
ergy under the following basic assumptions:

(1) The geometric equations are derived with small strains and large rotations.
(2) The relations between stresses and strains are linear.
(3) The internal force is uniquely proportional to the external load till the global buckling happens.
(4) The members remain straight lines before the buckling happens.
(5) The buckling is developed by an ultra-large deformation causing the structure to lose its load carrying capacity.
(6) The critical load is not related to the minimum cross-sectional moment of inertia.

With the foregoing assumptions the equilibrium equations are derived

ðKE þ KGÞU ¼ P; ð1Þ

where U is the vector of nodal displacement, P is the nodal load vector. KE and KG are global elastic matrix and geometric
matrix of the truss, respectively, defined as

KE ¼
X

KEk; KG ¼
X

KGk: ð2Þ

For a planar truss, the elementary stiffness matrices are expressed by
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where ck = cosak, sk = sinak, ak is the directional angle of member k with respect to x-axis. The axial force Nk is solved though
the elementary equilibrium equation

KEU ¼ P: ð4Þ

Applying the third basic assumption, i.e. assumption (3) one obtains

ðKE þ kKGÞU ¼ kP; ð5Þ

where k is the load factor. Eq. (5) yields the well-known eigenvalue equation

jKE þ kKGj ¼ 0: ð6Þ

By solving Eq. (6), one obtains M eigenvalues for the stability analysis, where M is the number of degree-of-freedom of the
truss. Among them the minimum eigenvalue is called the critical load factor, kcr. The critical load is
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