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Abstract

In this work we use a modified tanh–coth method to solve the Korteweg-de Vries and Korteweg-de Vries–Burgers’
equations. The main idea is to take full advantage of the Riccati equation that the tanh-function satisfies. New multiple
travelling wave solutions are obtained for the Korteweg-de Vries and Korteweg-de Vries–Burgers’ equations.
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1. Introduction

In this paper, we establish new travelling wave solutions to the Korteweg-de Vries (KdV) and Korteweg-de
Vries–Burgers’ (KdVB) equations given by

ut þ aux þ buxxx ¼ 0 ð1Þ
and

ut þ uux � auxx þ buxxx ¼ 0; ð2Þ
respectively, where a and b are some positive constants. The KdV equation (1) derived in 1895, see [1], models
one-dimensional shallow water waves with small but finite amplitudes. It has also been used to describe a num-
ber of important physical phenomena such as magnetohydrodynamics waves in a warm plasma, acoustic
waves in an anharmonic crystal and ion-acoustic waves [2]. Some papers, exploring various aspects of the
above, can be found in [3–8].
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The Korteweg-de Vries–Burgers’ equation (2) arises in many different physical contexts as a model equation
incorporating the effects of dispersion, dissipation and nonlinearity [9]. Some examples are provided by the
propagations of waves on an elastic tube filled with a viscous fluid [10], the flow of liquids containing gas bub-
bles [11] and turbulence [12].

Finding exact solutions of nonlinear partial differential equations (PDE’s) has become more attractive subject
due to the widespread of computer algebraic system (CAS), such as Maple and Mathematica. CAS allows us to
do tedious and lengthy manipulations. Moreover, CAS can help us find new exact solutions of nonlinear PDE’s.

Many methods were used to obtain travelling solitary wave solutions to nonlinear PDE’s, such as the
inverse scattering method [13–15], Hirota’s bilinear method [16,17], the tanh method [18,19], the sine–cosine
method [20,21], Backlund transformation method [22,23], the homogeneous balance [24,25], Darboux trans-
formation [26], the Jacobi elliptic function expansion method [27].

Among those, the tanh method, established by Malfliet [18], uses a particularly straightforward and effec-
tive algorithm to obtain solutions for a large numbers of nonlinear PDE’s. In recent years, much research
work has been concentrated on the various extensions and applications of the tanh method. Fan [28,29]
has proposed an extended tanh method and obtained new travelling wave solutions that cannot be obtained
by the tanh method. Recently, Wazwaz extended the tanh method and call it first the extended tanh method
[30–32] and later as the tanh–coth method [33]. Most recently, El-Wakil [34,35] and Soliman [36] modified the
extended tanh method (the tanh–coth method) and obtained new solutions for some nonlinear PDE’s. The
goal of this work is to implement the tanh–coth method and the Riccati equation in [37] to obtain more
new exact travelling wave solutions of the KdV and KdV–Burgers’ equations.

2. Description of the method

Consider the general nonlinear wave PDE’s, say, in two variables:

ut ¼ Gðu; ux; uxx; . . .Þ: ð3Þ
In order to apply the tanh–coth method, the independent variables, x and t, are combined into a new variable,
n = j(x � xt), where j and x represent the wave number and velocity of the travelling wave, respectively.
Both are undetermined parameters with the assumption that j > 0. Therefore, u(x, t) is replaced by u(n), which
defines the travelling wave solutions of Eq. (3). Equations such as Eq. (3) are then transformed into

�jx
du
dn
¼ G u; j

du
dn
; j2 d2u

dn2
; . . .

� �
: ð4Þ

Hence, under the transformation n = j(x � xt), the PDE in Eq. (3) has been reduced to an ordinary differen-
tial equation (ODE) given by Eq. (4). The resulting ODE is then solved by the tanh–coth method [27], which
admits the use of a finite series of functions of the form:

uðx; tÞ ¼ uðnÞ ¼ a0 þ
Xn

j¼1

½ajY jðnÞ þ bjY �jðnÞ� ð5Þ

and the Riccati equation

Y 0 ¼ Aþ BY þ CY 2; ð6Þ
where 0 :¼ d

dn ; and A, B, and C are constants to be prescribed later. The parameter n is a positive constant that
can be determined by balancing the linear term of highest order with the nonlinear term in Eq. (4). Inserting
Eq. (5) into the ODE in Eq. (4) and using Eq. (6) results in an algebraic equation in powers of Y. Since all
coefficients of Yj must vanish. This will give a system of algebraic equations with respect to parameters ai,
bi, j and x. With the aid of Maple, we can determine ai, bi, j and x. We will consider the following special
solutions of the Riccati equation (6):

(I) A = B = 1 and C = 0, Eq. (6) has the solution Y = en � 1.
(II) A = 1/2, B = 0 and C = �1/2, Eq. (6) has the solutions Y = cothn ± cschn and Y = tanhn ± isechn,

where i2 = �1.

To illustrate the method, we consider the KdV and the KdV–Burgers’ equations below.
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