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Abstract

The paper is concerned with the problem of robust asymptotic stability analysis of stochastic Cohen–Grossberg neural
networks with discrete and distributed time-varying delays. Based on the Lyapunov stability theory and linear matrix
inequality (LMI) technology, some sufficient conditions are derived to ensure the global robust convergence of the equi-
librium point. The proposed conditions can be checked easily by LMI Control Toolbox in Matlab. Furthermore, all the
results are obtained under mild conditions, assuming neither differentiability nor strict monotonicity for activation func-
tion. A numerical example is given to demonstrate the effectiveness of our results.
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1. Introduction

In the past few years, neural networks such as Hopfield neural networks [1], cellular neural networks [2],
and bi-directional associative memory neural networks [3] have attracted the attention of many scientists.
The Cohen–Grossberg neural networks (CGNN) were first proposed by Cohen and Grossberg [4]. As is well
known, Cohen–Grossberg neural networks include many models from different research fields, such as neuro-
biology, population biology and evolutionary theory. The stability of neural networks plays an important role
in their potential applications, such as associative content addressable memories, pattern recognition and opti-
mization, so it is of significance and necessary to investigate the stability of CGNN.
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It is well known that time delays may occur in neural processing and signal transmission, which can cause
instability and oscillations in system. On the other hand, neural networks usually have a spatial extent due to
the presence of a multitude of parallel pathways with a variety of axon sizes and lengths, and hence that there
is a distribution of propagation delays over a period of time. So the distributed delays should be incorporated
in the model. In other words, it is often the case that the neural networks model possesses both discrete and
distributed delays. As for the CGNN, due to its generality and wide prospect of applications, a number of
sufficient conditions have been proposed, see for [5–11] the exponential stability, [12–17] for global asymptotic
stability and [18–20] for distributed delays and the references therein.

When performing the computation, there are many stochastic perturbations that affect the stability of neu-
ral networks. A neural network could be stabilized or destabilized by certain stochastic inputs. It implies that
the stability analysis of stochastic neural networks also has primary significance in the research of neural net-
works. Recently, there are some research issues about stochastic neural networks, see [21–24] and references
therein. In [21,22], the stability problem is investigated for Hopfield stochastic neural networks. In [23], the
authors obtain some sufficient criteria ensuring the almost sure exponential stability of the stochastic
Cohen–Grossberg neural networks by constructing suitable Lyapunov functional and employing the semimar-
tingale convergence theorem. However, the condition does not consider the entries of the connection matrices.
Thus the difference between the neuron excitatory and inhibitory effects might be ignored. The global asymp-
totic stability analysis problem is considered for a class of stochastic Cohen–Grossberg neural networks with
constant mixed delays in [24]. The proposed criterion is dependent of the bound parameters of amplification
function. And the criterion is delay-independent on discrete delay and it doesn’t consider the uncertainties.

In our paper, we develop new delay-dependent robust stability conditions for stochastic Cohen–Grossberg
neural networks with discrete and distributed time-varying delays by utilizing Lyapunov functions. The acti-
vation function is vary general, assuming neither differentiability nor strict monotonicity. The stability criteria
are derived as LMIs which can be efficiently solved by the LMI Control Toolbox in Matlab. The effectiveness
of the proposed stability criteria is illustrated in a numerical example.

Notations 1. Let ðX;F; fFtgtP0; P Þ be a complete probability space with a filtration fFtgtP0 satisfying the
usual conditions (i.e. it is right continuous and F0 contains all P-null sets). The mathematical expectation
operator with respect to the given probability measure P is denoted by E{Æ}.

2. System description

The delayed stochastic Cohen–Grossberg neural networks can be described by the following delay differ-
ential equation:

dxðtÞ ¼ �aðxðtÞÞ½bðxðtÞÞ � Af1ðxðtÞÞ � Bf2ðxðt � hðtÞÞÞ � C
Z t

t�sðtÞ
f3ðxðsÞÞds�

( )
dt

þ rðt; xðtÞ; xðt � hðtÞÞÞdxðtÞ; ð1Þ

where x(t) = [x1(t), . . .,xn(t)]T 2 Rn is the state variable, a(x(t)) = diag{a1(x1(t)), . . ., an(xn(t))} represents an
amplification function and assumed to be positive, bounded and locally Lipschitz continuous, b
(x(t)) = [b1(x1(t)), . . . ,bn(xn(t))]T is the behaved function. fi(x) = [fi1(x1(t)), . . . ,fin(xn (t))]T(i = 1,2,3) are the
neuron activation function. A is the feedback matrix, B and C represent the discretely delayed connection
weight matrix and the distributive delayed connection weight matrix, respectively. The discrete and distributed
time delays are time-varying and satisfy 0 6 h(t) 6 h and _hðtÞ 6 l < 1, 0 6 s(t) 6 s. x(t) = [x1(t), . . . ,
xm(t)]T 2 Rm is a m-dimensional Brownian motion defined on a complete probability space ðX;F;
fFtgtP0; P Þ. Moreover, r satisfies

trace½rTðt; xðtÞ; xðt � hðtÞÞÞrðt; xðtÞ; xðt � hðtÞÞÞ� 6 xTðtÞRT
1 R1xðtÞ þ xTðt � hðtÞÞRT

2 R2xðt � hðtÞÞ: ð2Þ

Assumption 1. bi(x):R! R is continuous and differentiable, and

b0iðxÞP ci > 0 8x 2 R; i ¼ 1; . . . ; n: ð3Þ
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