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a  b  s  t  r  a  c  t

This paper  develops  the  method  of envelope  equations  to describe  the  oscillatory  motion  of ions  in
quadrupole  mass  analysers  with  round  rods.  Nonlinear  equations  for the  description  of the  envelope
dynamics  are  obtained  taking  into  account  the  dodecapole  (twelve-pole),  the  icosapole  (twenty-pole)
and  octopole  field  distortions.  It is  shown  that  the  effective  potential  which  determines  the  ion  vibration
envelope  has  a  quadratic  part, with  a magnitude  and  sign  that  depend  on the location  of  the  ion  working
point.  It also  contains  a nonlinear  part, which  does  not  depend  on  the  ion  working  point  location  near
the  tip  of  the  first stability  zone.  The  motion  of ions  in  quadrupole  mass  filters  with  cylindrical  rods  has
a nonlinear  character  at a theoretical  mass  resolving  power  over  1000.  In the linear  approach,  nonlinear
effects  of the  ion motion  occur  in  a  narrow  zone  near  the boundaries  of the  first  stability  region.  This
explains  low  sensitivity  of  mass  analysis  within  stability  islands,  which  is a direct result  of  the  quadrupole
excitations  at  a  frequency  different  from  the  main  excitation  frequency.  Thus,  the  boundaries  do not
depend  on  nonlinear  field  distortions.  The  results  of this  theoretical  approach  are  illustrated  using the
transmission  peak  shape  modelling  for mass  analysers  with  different  values  of the  rod  radius  r  relative
to  the  inscribed  radius  r0.

It is  shown,  that  the  6th  and  10th order  field distortions  never  compensate  each  other.  However,  the
octopole  field  suppresses  them  completely  in  the  range  1.115  <  r/r0 < 1.135,  which  is  considered  as an
optimum.  It is also  shown  that  very  substantial  improvements  in  a peak  shape  can  be achieved  by  adding
minor  (less  than  1%)  octopole  distortions.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

It would not be a big mistake to say, that al most every mod-
ern high-end mass spectrometer includes a linear quadrupole.
Quadrupole mass analysers are routinely used as residual gas
analysers for vacuum systems [1], as inexpensive mass scanning
analysers, for precursor ion mass selection in tandem mass spec-
trometers [2], as collision cells [3] or ion guides [4], and as linear
ion traps with radial [5] or axial [6] ion ejection.

The ideal quadrupole field is created by electrodes with a
hyperbolic cross section. However, the manufacturing and assem-
bling of such electrode systems requires anaccuracy in the micron
range, which is a difficult and very expensive task. For this reason,
many commercial companies use the round rods (cylinders). The
field within such mass analysers differs from an ideal quadrupole
field and contains nonlinear components. It has been found
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experimentally, that the optimal geometry of such quadrupole elec-
trode systems has the ratio of the rod radius r to the inscribed
radius r0 lying in the range from 1.115 to 1.130. Originally this
fact was  obtained experimentally by companies manufacturing
quadrupoles. Recently, this has been confirmed theoretically by
computer simulations of the transmission peaks for quadrupole
mass filters with round rods [7,8].

It has been known from the early history of quadrupole technol-
ogy development, that the use of cylindrical instead of hyperbolic
rods distorts the peak shape. In addition, the peak position shifts
when the resolving power is changed. It has been claimed that
these distortions are caused by nonlinear resonances of ion vibra-
tions, the effect typical for nonlinear vibrational systems with many
degrees of freedom [9]. Dawson and Whetten have attributed this
to the sixth order resonance line ˇx + 2ˇy = 1, that appears close to
the Y stability boundary [10]. Such resonances are typical for 3D
ion traps operating in the QUISTOR mode, when ions experience
over 105RF cycles [11]. For a mass filter, resonances appear [12] at
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Kˇx + (N − K)ˇy = 2, where K has values of N, (N − 2), (N − 4), . . . and
N is the order of the nonlinear resonance [13].

In this paper, to describe ion motion within quadrupole mass fil-
ters with cylindrical rods, perturbation theory is applied to derive
the equations of ion vibration envelopes. These equations come
from nonlinear terms in the original equations of motion, which
appear due to deviations of the real field from a pure quadrupole
field. The analysis of these equations shows that the above non-
linear resonances do not distort a peak shape because there is
insufficient ion residence time inside a quadrupole analyser. All
major phenomena, which are typical for quadrupole mass filters
with cylindrical rods are explained by the shape of the nonlin-
ear effective potential of the ion vibration envelope. The effective
potential has a quadratic part, with magnitudes and signs that
depend on the ion working point location. It also contains a nonlin-
ear part, which does not depend on the ion working point location
near the tip of the first stability zone. The results of the theoretical
approach are illustrated by modelling the transmission peaks for
mass analyzers with different values of the ratio of the rod radius
to the inscribed radius r/r0.

We  also show here that the motion of ions in quadrupole mass
filters with cylindrical rods has a nonlinear character at a theoreti-
cal resolving power over 1000. Nonlinear effects of the ion motion
occur in a narrow zone near the boundaries of the first stability
region. This explains the low sensitivity of mass analysis within
stability islands, which is a direct result of quadrupole excitation
at a frequency different from the main RF frequency. Thus, the
boundaries do not depend on nonlinear field distortions.

It is shown, that the 6th and 10th order field distortions never
compensate each other. However, an octopole field suppresses
them completely in the range 1.115 < r/r0 < 1.135, which is consid-
ered optimum. It is also shown that very substantial improvements
in a peak shape can be achieved by adding minor (less than 1%)
octopole distortions.

2. Field distortions in quadrupole mass filters with
cylindrical rods and the equations of ion motion

An ideal quadrupole mass filter consists of four conductive elec-
trodes with hyperbolic cross sections. They are arranged parallel to
the common axis Z and are spaced by the distance r0 from the center
(Fig. 1). A radio frequency (RF) voltage V(t) is connected positively
to one pair of rods (the X– rods) and negatively to the other pair
(the Y– rods), creating a 2D electric field among the rods, with a
potential given by:

˚(x,y,t)  = V(t)·˚(x,y). (1)

For mass analysis, the applied voltage has both DC (U) and radio-
frequency (V) components:

V(t) = U + V · Cos
[
˝t  + ˛

]
. (2)

Fig. 1. Electrode system of quadrupole mass filters with hyperbolic rods.

Here ˝–  is the angular frequency of the RF power supply and � –
is the initial phase.

The function ˚(x, y) in Eq. (1) describes the potential distribu-
tion of the electric field inside a quadrupole analyser. A method
of a very accurate computation of this function is described in
[14] for quadrupole analysers with cylindrical rods. Nonlinear field
distortions are also analysed for such electrode systems. It has
been found that the major field distortions in quadrupole analy-
sers with cylindrical rods are the twelve-pole harmonics, which
can be characterised by a dimensionless multipole amplitude A6,
and the twenty-pole harmonic with the amplitude A10. Consider-
ing these distortions, the potential function for the electric field can
be written in the following form:

˚(x, y) = A2
x2 − y2

r2
0

+ A6
p6(x, y)

r6
0

+ A10
p10(x, y)

r10
0

, (3)

where A2 is the amplitude of the quadrupole field. In analysers with
an ideal field this parameter is equal to one: A2 = 1.0. For analy-
sers with cylindrical rods this parameter differs slightly from one.
Here r0 is the inscribed radius of the quadrupole mass filter (“the
field radius”). The field distortions are described by the following
functions

p6(x, y) = x6 − 15x4y2 + 15x2y4 − y6, (4.a)

p10(x, y) = x10 − 45x8y2 + 210x6y4 − 210x4y6 + 45x2y8 − y10, (4.b)

The equations of ion motion in such a 2D field are the following:

M
d2x

dt2
+ eV(t) · A2

2x

r2
0

= −eV(t) ·
[

A6

r6
0

· ∂p6(x, y)

∂x
+ A10

r10
0

· ∂p10(x, y)

∂x

]
, (5.a)

M
d2y

dt2
− eV(t) · A2

2y

r2
0

= −eV(t) ·
[

A6

r6
0

· ∂p6(x, y)

∂y
+ A10

r10
0

· ∂p10(x, y)

∂y

]
. (5.b)

Here M is the ion mass and e is the charge. Ions move with a con-
stant velocity along the Z axis. Let us assume that RF voltage, applied
to the electrodes of the analyser is harmonic: V(t) = U + Vcos(˝t + �).
Now we introduce dimensionless variables with the following def-
initions

a = A2
8eU

M˝2r2
0

, q = A2
4eV

M˝2r2
0

. (6)

Instead of time we introduce the dimensionless variable
� = (˝t + �)/2 and measure all dimensions in the units of r0. This
means that instead of actual x and y coordinates of an ion we con-
sider the same variables divided by r0:x → x/r0and y → y/r0. After
such a transformation we obtain the equations of ion motion in the
following form

x′′ + (a + 2q cos �) · x = f (x, y, t) · x, (7.a)

y′′ − (a + 2q cos �) · y = g(x, y, t) · y, (7.b)

where

f (x, y, �) = −(a + 2q cos 2�) · [6˛6 · (x4 − 10x2y2 + 5y4)
+10˛10 · (x8 − 36x6y2 + 126x4y4 − 84x2y6 + 9y8)] , (8.a)

g(x, y, �) = −(a + 2q cos 2�) · [−6˛6 · (y4 − 10y2x2 + 5x4)
−10˛10 · (y8 − 36y6x2 + 126y4x4 − 84y2x6 + 9x8)]. (8.b)

Here � is a dimensionless time unit measured from the end of each
nth RF cycle: � = n� + �, where n = 1, 2,.... Here we also introduced
the relative amplitudes of nonlinear distortions according to the
following definitions

˛6 = A6

2A2
and ˛10 = A10

2A2
(9)
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