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a  b  s  t  r  a  c  t

Dead  time  effects  in time-of-flight  secondary  ion mass  spectrometry  are  well  known  and  can  be  cor-
rected  for  using  Poisson  statistics.  Laser-induced  desorption,  however,  introduces  nonlinearity  in the
evaporation  process  resulting  in  highly  fluctuating  signals  that  make  proper  dead  time  correction  much
more  challenging.  Here,  we  propose  a modified  dead  time  correction  procedure  that  overcomes  such
obstacles  using  data  from  correlated  detection  events  from  different  isotopes  of  a  single  element.  Pro-
vided  the  signals  are  not  affected  by unresolved  mass  interferences,  this  dead  time  correction  enables
us  to  obtain  meaningful  isotope  ratios  as  demonstrated  for atom  probe  tomography  data  of  carbon  from
nanodiamonds  and  of  silicon.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Any detector is able to reliably distinguish between different
events only if they are separated from each other sufficiently either
in time or in space. The duration a detector needs to recover after a
counting event in order to be able to detect a second event following
shortly afterwards is described as the dead time of the detector. It
should be clarified that detector in this context describes the entire
detection system typically consisting of several components such
as the actual detector, typically a photomultiplier or microchan-
nel plate, a discriminator that accepts signals as counting events
or rejects them as electronic noise, and a time digitizer, which
converts time intervals into digital representations.

In favorable cases, statistical approaches can be used to correct
for dead time effects in order to calculate the signal intensities that
an ideal detector with no dead time would have delivered. Dead
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time correction in time-of-flight mass spectrometry (TOF-MS) is
complicated by the fact that signal intensities vary on very short
time scales. However, such highly fluctuating signals can often be
corrected for dead time effects as described in the literature [1].
Correction is possible since each measurement usually averages
over a large number of ionization events that, except for statisti-
cal fluctuations, are uniform in ionization yield. This is typically
fulfilled, e.g., in time-of-flight secondary ion mass spectrometry
(TOF-SIMS) as long as the measurement is restricted to a homo-
geneous sample or sample region and neither sample properties
nor primary ion beam intensity vary significantly during the anal-
ysis. Here, dead time correction works well and is now standard
protocol during quantitative data evaluation [2–4]. An interlabora-
tory study involving 21 TOF-SIMS instruments has shown that this
dead time correction is generally applicable and robust [5].

However, for some TOF-MS techniques, ionization yield is not
constant and the dead time correction described by Stephan et al.
[1] could not be applied. This is especially the case in techniques
where laser-induced desorption is used, e.g., in laser desorption
resonance ionization mass spectrometry (RIMS). As described by
Savina et al. [6], the desorption process is nonlinear in laser
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pulse energy, and moderate fluctuations lead to large variations
in the desorbed particle flux. Desorption lasers are therefore often
operated in a very low power regime, where particles are desorbed
only occasionally, in order to avoid relatively powerful laser pulses
that would release many particles in a single shot [6]. Very low
count rates are the consequence, and measurement times have to
be increased drastically to achieve sufficient counting statistics, if
high precision is required.

This is also the case in atom probe tomography (APT), which
combines field evaporation triggered by pulsing from a focused
ultraviolet laser in a constant electric field with TOF-MS [7,8]. Using
APT in order to measure isotope ratios in nanoparticles would be
highly desirable in particular for cosmochemical applications, e.g.,
to study the origin of meteoritic nanodiamonds [8]. However, such
data so far suffer from instrumental biases [8] among which dead
time effects seem to play a major role. Therefore, most APT applica-
tions until now focused on the elemental composition of samples,
where high accuracy is less crucial, as it was previously impossible
to get useful isotope ratios.

However, the importance of multi-hit events causing dead time
effects, also referred to as pile-up or detector saturation, for inter-
pretation of mass spectra in APT has been recognized in the field.
It has been identified already in 1978 that atom probe data do
not directly give the true composition of a sample and that Pois-
son statistics could be applied for correction [9]. In 1984, Cerezo
et al. developed a statistical correction without making any prior
assumptions as to the distribution of ions per pulse [10]. In 1988,
Menand et al. made a similar approach but made use of double
counting events [11]. More recently, methods such as a contin-
gency table approach have been employed to study correlations
in field evaporation and to improve quantification of measured
compositions [12].

Here, we present a dead time correction of APT isotope data
using Poisson statistics but avoiding some of the deficiencies from
previous studies and apply this correction to carbon and silicon
data [8]. By using correlated counting events from isotopes of the
same element, the method presented here allows correction of APT
data from ion species that vary significantly in their evaporation
behavior with some elements being more prone to evaporation in
multiples than others.

2. Counting statistics

In the following, we  will focus on the simple case, where for one
laser pulse, only one ion per species can be detected, and different
species are separated by a sufficient time gap so that they do not
interfere with each other. From Eq. (8) in Stephan et al. [1],

aE = −N · ln
(

1 − a

N

)
and bE = −N · ln

(
1 − b

N

)
. (1)

Here, aE and bE describe the corrected peak integrals or true
intensities for two isotopes of an element E, whereas a and b repre-
sent the measured intensities for these isotopes, and N is the number
of ionization events. It should be clarified here that, in general, the
number of ionization events is smaller than the number of pulses
from the desorption laser, if we assume that many laser pulses do

not have the potential to cause ionization of the element of inter-
est. This is different from TOF-SIMS, where each primary ion pulse
is considered an ionization event, and N is a known quantity. For
laser-induced desorption, N is unknown and may depend on the ion
species. N is not the number of pulses in which ionization occurs;
rather, it can be best described as the number of laser pulses where
the conditions for formation of a given ion species are met. How-
ever, we  can assume that N is identical for different isotopes of the
same element and that isotope effects on desorption yields can be
neglected.

2.1. The number of ionization events

If we now assume that detection of both isotope species is inde-
pendent, the probability of detecting a correlated event, where both
isotopes are detected in a single ionization event, is

c

N
= a

N
· b

N
. (2)

Here, c is the number of laser pulses for which both isotopes are
detected. N can therefore be calculated as

N = a · b

c
. (3)

For the statistical error �N, one has to take into account that a
and b are not independent from c. We  therefore introduce

a′ = a − c and b′ = b − c (4)

as independent variables, since they are the number of counting
events for both isotopes not including the number of correlated
events given by c. Eq. (3) now becomes

N = (a′ + c)(b′ + c)
c

.  (5)

The statistical error �N now follows from the error propagation
theorem as
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Using the original variables a and b, this can also be written as
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2.2. Peak integrals

Using Eq. (3), the peak integral aE from Eq. (1) can be calculated
as

aE = −a · b

c
·  ln
(
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b

)
. (8)

For calculation of the statistical errors, independent variables
are needed
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Then, the statistical error becomes
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Using the original variables a and b, this can also be written as
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