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a b s t r a c t

This paper deals with the numerical study of a conductive, convective and radiative cylindrical porous fin.
At first, Runge–Kutta method-based numerical solution is obtained for calculating the temperature dis-
tribution, and then an inverse problem is solved for estimation of unknown parameters. Five critical
parameters such as the porosity, emissivity, solid thermal conductivity, thickness and the permeability
have been simultaneously predicted for satisfying a prescribed temperature distribution on the surface
of the porous fin. This is achieved by solving an inverse problem using the hybrid evolutionary–nonlinear
programming optimization algorithm. The effect of random measurement errors between ±10% has
been considered. The estimated values of non-dimensional entities such as porosity and surface emissiv-
ity are found to be approximately within the range, 0.28–0.92 and 0.27–0.75, respectively. Additionally,
the thermal conductivity, thickness and the permeability are found to be almost between 17 and
140 W/m K, 8.7 � 10�4 to 0.007 m and 2 � 10�11 to 5 � 10�8 m2, respectively. The present study reveals
that many feasible combinations of available materials satisfy the same temperature field, thus providing
an opportunity for selecting any combination from the available alternatives. Moreover, the hybrid
method is found to perform better and yield relatively faster convergence than individual methods.
The sensitivity analysis reveals that the effect of fin permeability on the temperature field is considerably
high than other parameters.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The heat transfer analysis of porous fins is one of the emerging
fields of research, since, for the same weight, a porous fin performs
better than a solid fin [1]. Apart from the initial and boundary con-
ditions, the temperature distribution in a porous fin depends upon
many thermo-physical properties such as density, specific heat,
thermal conductivity, dynamic viscosity and coefficient of volu-
metric thermal expansion of the fluid. In addition to these proper-
ties, solid thermal conductivity, permeability, porosity along with
the surface conditions and geometric configurations also influence
the temperature field of a porous fin. The available literatures indi-
cate that most of the studies on porous fins are aimed at calculat-
ing the steady-state temperature distributions from the knowledge
of thermo-physical properties using appropriate boundary condi-
tions of the fin [2–8]. One of the ways of obtaining the temperature
profile is to conduct an experiment by maintaining proper bound-
ary conditions. However, it is well-known that for saving the time,
money and manpower, a computational study is preferable. In

order to computationally achieve the desired task, the governing
heat transfer equation needs to be solved by employing a suitable
method using known thermo-physical properties and boundary
conditions. Such type of approach is known as forward analysis
[9,10] and the solution of such analyses is generally unique. The
situation becomes relatively different and complex when the
objective is to determine some important unknown parameters
in order to satisfy a particular temperature field. Such type of prob-
lems is known as inverse problems and their solution is not neces-
sarily unique [11]. In other words, several possible combinations of
unknown parameters satisfying a given requirement may exist
[12]. Therefore, the investigation of inverse problems is an impor-
tant and pertinent task for designing an engineering system [13].

It is observed on one hand that many studies dealing with
inverse analysis of conventional fins are available in the literature
[14]. However, on the other hand very few inverse problems for
porous fins are available [12,15]. The solution of an inverse prob-
lem requires a forward method along with a suitable optimization
method, and its solution depends upon the effectiveness of the
optimization algorithm. Many optimization methods can be found
in the literatures which have been employed for solving inverse
heat transfer problems involving fins. Some of them are the
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conjugate gradient method [16], Levenberg–Marquardt method
[17], genetic algorithm (GA) [18], simplex search method [19], sim-
ulated annealing (SA) [20], differential evolution (DE) [21], etc.
Apart from to these, for problems other than inverse analyses of
fins, many optimization methods working on nonlinear program-
ming (NLP) methods are also well-addressed in the literature
[22,23]. Inspite of relatively slow converging feature of the evolu-
tionary/stochastic methods than the deterministic methods due to
elimination of gradients [24], it is observed that for inverse prob-
lems, the stochastic/evolutionary-based optimization algorithms
(such as GA, DE, and SA) work better than the conventional
deterministic methods [25]. This is due to the reason that unlike
deterministic algorithms which work either with one or few solu-
tions at a time, the stochastic/evolutionary algorithms possess the
capability of working simultaneously with more number of feasible
solutions. Therefore, the stochastic/evolutionary algorithms can per-
form exhaustive searching in the solution search domain. As com-
pared to other evolutionary optimization algorithms, DE [26]
possesses few advantages such as fast convergence, simplicity, easy
of implementation and its efficacy for optimizing many engineering
and nonlinear problems [27,28]. For inverse problems, in order to
combine the advantages of deterministic methods (such as fast con-
vergence) and stochastic methods (such as the capability of exhaus-
tive searching) into one algorithm, recently the usage of hybrid
optimization techniques are also gaining considerable attention [29].

Due to the inherent advantages over conventional fins and very
limited availability inverse optimization studies for porous fins, the
objective of the present work is to provide forward numerical and
inverse solutions for a porous cylindrical fin. At first, using fourth
order Runge–Kutta (RK-4) method, numerical solutions for com-
puting the temperature field is obtained. The temperature field of
the present work is then validated with the results of the homoto-
py analysis method (HAM) described in the relevant literature [30].
During the inverse analysis, a hybrid DE–NLP algorithm is used for

the purpose of optimization due to various reasons as mentioned
earlier. The inverse problem is aimed at simultaneously estimating
five critical parameters such as the fin porosity, emissivity, solid
thermal conductivity, thickness and permeability of the cylindrical
porous fin for satisfying a prescribed temperature field. In this work,
as the temperature field is assumed to be available only for a partic-
ular radial distance, so the inner and the outer radii are assumed to
remain fixed. Since there are five unknowns, so it is most likely that
many feasible combinations of the five unknowns can satisfy a given
requirement, and this will offer flexibility in selecting any combina-
tion of the five parameters amongst many feasible alternatives. The
solid material for the porous fin can be selected from the known
value of the solid thermal conductivity and therefore solid thermal
conductivity is treated as an unknown quantity for the inverse prob-
lem. The fluid properties are assumed to remain fixed and nearly
correspond to air at 300 K and 1 atmosphere pressure. For a given
temperature field, the unknown properties such as the fin porosity
and thickness can be adjusted by the designer, therefore these are
treated as unknown parameters. In addition to these parameters,
the emissivity can be regulated by adjustment of surface conditions
as the emissivity increases with an increase in the surface roughness
[31–33]. Additionally, the permeability (which is the measure of the
ease with which the fluids can pass through the solid) of a porous
material depends upon the size of the pores, pressure regulation,
surface conditions, etc. [34,35]. Due to these reasons, the emissivity
and permeability are also considered to be unknown parameters
during the inverse analysis. Below the formulation and solution
methodology of the present problem are discussed.

2. Formulation

Let us consider the geometry of a porous concentric cylindrical
fin as shown in Fig. 1. The analysis is subjected to the following
assumptions [3,5,8,10,12,30,36–42].

Nomenclature

A matrix of constraint gradients
a, b, c, d, e vectors in DE algorithm
cp specific heat of the fluid
Da Darcy number
er measurement error
F objective function
f radiation shape factor
g acceleration due to gravity (9.81 m/s2)
Gr Grashof number
H Hessian matrix in NLP algorithm
j set containing the constraints
K permeability of the fin (m2)
k thermal conductivity (W/m K)
kf fluid thermal conductivity (W/m K)
kr thermal conductivity ratio, keff/kf

ks solid thermal conductivity (W/m K)
_m mass flow rate of the fluid (kg/s)

N number of temperature measurement points
Nc convection parameter
Nr radiation parameter
N set containing the unknowns
P matrix of slack variables
p number of constraints
Pr Prandtl number
q heat transfer rate (W)
R any location along the radial direction (m)
rb inner (base) radius of the fin (m)
rt outer (tip) radius of the fin (m)

r* non-dimensional radius (=r/rb)
r�t non-dimensional tip radius (=rt/rb)
Ra Rayleigh number (=Gr�Pr)
S sensitivity coefficient
s slack variable
T temperature (K)
Tb base temperature (K)
T1 ambient temperature (K)
t thickness of the fin (m)
Y mutant vector in DE algorithm
Z parent vector in DE algorithm
z child vector in DE algorithm

Greek symbols
af thermal diffusivity of the fluid (m2/s) (=kf/(q�cp))
b coefficient of volumetric thermal expansion (1/K)
v crossover probability in DE algorithm
e emissivity of the fin surface
/ porosity of the fin
l penalty parameter in NLP
mf kinematic viscosity of the fluid (m2/s)
h non-dimensional temperature (=T/Tb)
ha non-dimensional ambient temperature (=T1/Tb)
~h exact value of non-dimensional temperature
q density of the fluid (kg/m3)
r Stefan–Boltzmann constant (5.67 � 10�8 W/m2 K4)
x scaling factor in DE algorithm
w Lagrange multiplier in NLP algorithm
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