Accepted Manuscript

Title: Response to "Salt-assisted dispersion effects in dispersive liqud-liquid microextraction of haloacetonitriles"

Authors: Huilian Ma, Jiping Chen

PII: S0021-9673(18)30141-9

DOI: https://doi.org/10.1016/j.chroma.2018.02.009

Reference: CHROMA 359188

To appear in: Journal of Chromatography A

Received date: 2-2-2018

Please cite this article as: Huilian Ma, Jiping Chen, Response to "Salt-assisted dispersion effects in dispersive liqud-liquid microextraction of haloacetonitriles", Journal of Chromatography A https://doi.org/10.1016/j.chroma.2018.02.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Response to "Salt-assisted dispersion effects in dispersive liqud-liquid

microextraction of haloacetonitriles"

Huilian Ma, Jiping Chen*

Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of

Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Keywords: salt-assisted; Dispersive liquid-liquid microextraction; Dispersion

Dear Editor,

We would like to thank you for the opportunity to respond to the issues raised in

Dr Ebrahimpour's letter and to clarify aspects of our methodology in relation to these

concerns. We would also like to thank Dr Ebrahimpour for his interest in our paper,

"Salt-assisted dispersive liquid-liquid microextraction coupled with programmed

temperature vaporization gas chromatography–massspectrometry for the determination

of haloacetonitriles in drinking water" Huilian Ma, Yun Li, Haijun Zhang, Syed Mazhar

Shah, Jiping Chen. Journal of Chromatography A, 1358 (2014) 14–19. Our responses

to his specific remarks were individually given below.

A.) According to the classic description of DLLME, "the cloudy state is formed due to

the solvent droplets upon injection of the binary solvent mixture (extraction and

disperser solvents) into an aqueous sample" [2], and the characteristic of DLLME is

that "the large surface area between the fine droplets and the aqueous phase facilitates

the quick transfer of analytes from the sample solution into the extraction phase". In

fact, the extraction method established in our study also has obvious characteristic of

DLLME. With the addition of salt and assistant of manual shaking, fine droplets of

extraction solvent can be fully dispersed in aqueous phase, and thus a cloudy solution

is formed. Different from the traditional DLLME, the extraction solvent was used but

the disperser solvent was not needed. So we defined our method as "Salt-assisted

Download English Version:

https://daneshyari.com/en/article/7608246

Download Persian Version:

https://daneshyari.com/article/7608246

Daneshyari.com