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a  b  s  t  r  a  c  t

With  the  shift  of focus  of  the regulatory  bodies,  from  fixed  process  conditions  towards  flexible  ones
based  on  process  understanding,  model-based  optimization  is  becoming  an important  tool  for  process
development  within  the  biopharmaceutical  industry.  In  this  paper,  a multi-objective  optimization  study
of  separation  of  three  insulin  variants  by  reversed-phase  chromatography  (RPC)  is  presented.  The  decision
variables  were  the  load  factor,  the  concentrations  of  ethanol  and  KCl in  the  eluent,  and  the cut points
for the  product  pooling.  In addition  to the  purity  constraints,  a solubility  constraint  on  the  total  insulin
concentration  was  applied.  The  insulin  solubility  is  a function  of the ethanol  concentration  in  the  mobile
phase,  and  the  main  aim was to investigate  the  effect  of  this  constraint  on  the  maximal  productivity.

Multi-objective  optimization  was  performed  with  and  without  the  solubility  constraint,  and  visualized
as  Pareto  fronts,  showing  the  optimal  combinations  of the  two  objectives  productivity  and  yield  for  each
case.  Comparison  of  the  constrained  and unconstrained  Pareto  fronts  showed  that  the  former  diverges
when  the  constraint  becomes  active,  because  the  increase  in  productivity  with  decreasing  yield is almost
halted.  Consequently,  we suggest  the  operating  point  at which  the  total  outlet  concentration  of  insulin
reaches  the  solubility  limit  as  the  most  suitable  one.

According  to the results  from  the  constrained  optimizations,  the maximal  productivity  on the  C4 adsor-
bent  (0.41  kg/(m3 column  h))  is less  than  half  of  that  on  the C18 adsorbent  (0.87  kg/(m3 column  h)).  This
is  partly  caused  by the  higher  selectivity  between  the  insulin  variants  on the  C18 adsorbent,  but  the  main
reason  is  the  difference  in  how  the  solubility  constraint  affects  the  processes.  Since the  optimal  ethanol
concentration  for elution  on  the  C18 adsorbent  is higher  than  for the  C4 one,  the insulin  solubility  is  also
higher,  allowing  a higher  pool  concentration.  An  alternative  method  of finding  the  suggested  operating
point  was  also  evaluated,  and  it was  shown  to give  very  satisfactory  results  for  well-mapped  Pareto  fronts.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The downstream processing of biopharmaceuticals based on
peptides or small proteins, such as insulin, generally includes one
or more steps based on preparative reversed-phase chromatogra-
phy (RPC) [1–4]. Design and optimization of these chromatographic
processes can be performed using either mainly experimental or
mainly computational methods. The latter is based on mechanis-
tic modeling and simulation of the process. Despite the advances
in mechanistic modeling and reductions in computational time
during the last decade, the pharmaceutical industry has tradition-
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ally been skeptical towards model-aided process development and
analysis. However, the changes made during the last decade in
the regulatory framework for pharmaceutical development, man-
ufacturing and quality assurance have, to some extent, served as
an incentive for industry to explore modeling and simulation for
increased process understanding and controllability [5,6]. Inclusion
of models in the filing documentation might allow a more flexible
process, for which changes are not confined to a narrow design
space, but instead can be approved based on simulations showing
that the critical quality attributes are still fulfilled [7].

With increasing competition on the market for biopharmaceuti-
cals, e.g. from the emerging generic drugs [8]; and a need for drastic
reductions in production costs for therapeutic proteins going from
subcutaneous to oral administration, due to the required large
increase of the dose [9]; process optimization within the production
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of biopharmaceuticals is more important than ever. As studies have
shown that model-aided optimization is often superior to opti-
mization based on experiments, e.g. design of experiments (DoE)
together with a statistical approach, both regarding accuracy of the
result and resource utilization [10,11], there are strong incentives
to further develop and implement the use of mechanistic models
within the pharmaceutical industry.

Considering the high value of the active ingredient, it is not obvi-
ous that maximal productivity, constrained by a minimum purity,
gives the desired optimal process conditions. The yield of the target
component might be equally or more important than the productiv-
ity. It is, however, generally not desirable to optimize for maximal
yield, since this theoretically corresponds to analytical conditions
with column loads within the linear range. A suitable trade-off
between productivity and yield can be found by multi-objective
optimization in which the objective is a weighted combination of
these two quantities [12–14]. Optimization of a chromatographic
process is a bi-level optimization with a lower level, at which the
optimal cut-points for product pooling are found, and an upper
level, at which the values of the chosen decision variables are tuned
to maximize the objective function value [15]. In order to find a true
optimum for the chosen weight, it is important that the same objec-
tive is used on both levels [16]. The results from a multi-objective
optimization can be visualized with Pareto fronts, i.e. plots with
the different objective values at different weights on one axis each,
facilitating a combination of qualitative and quantitative evalua-
tion, as well as comparison of different process set-ups [13] and
constraints [14] . Usually, only the purity constraint is varied, and
other constraints, e.g. regarding the solubility, are kept constant.

The study presented in this paper is a continuation of a series of
papers on investigation and modeling of the effects of the mobile
phase composition on the retention of three insulin variants in RPC
[17,18]. In the present study, the final model is applied for an opti-
mization of this separation process. As in the previous studies, a
dual modulator system, comprised by ethanol and potassium chlo-
ride (KCl), was used; and two different adsorbents, with C18 and C4
ligands, respectively, were evaluated. The optimal load factor and
modulator concentrations for each adsorbent were determined,
using a weighted combination of yield and productivity of the inter-
mediately eluted insulin as the objective. The method presented by
Knutson et al. [16], using the same objective function on both opti-
mization levels, i.e. for both product pooling and tuning of process
conditions, was applied. In addition to the purity and impurity con-
straints, a constraint on the total outlet concentration of insulin was
applied. The maximum concentration was set to 90% of the solu-
bility, according to the correlation presented in our previous work
[18]. The aim of this study was to compare the performance of the
two adsorbents, and to investigate the effect of the solubility con-
straint on the shape of the Pareto fronts. Additionally, an alternative
to constrained optimization was evaluated.

2. Modeling, simulation and optimization

2.1. Column description

The kinetic dispersive model [19] applied in this study is
given by Eq. (1). Inherent assumptions are mono-disperse adsor-
bent particles and radial homogeneity of the column packing. The
numerator in front of the adsorption term corresponds to the pore
volume of adsorbent j accessible to adsorbate i, which was chosen
as a basis for the adsorption capacity.

∂ci,j
∂t

= Dapp,j
∂2
ci,j

∂z2
− vsup
εt,i,j

∂ci,j
∂z

−
(

1 − εc,j
)
εp,jkD,i,j

εt,i,j

∂qi,j
∂t

(1)

ci,j and qi,j are the concentrations of solute i in the mobile phase and
in the stationary phase, respectively, at the time t and at position
z counting from the column inlet. For ci,j , index i also includes the
modulators. The adsorption model described in Section 2.2 gives
the time derivative of qi,j . Dapp,j is the apparent axial dispersion
coefficient and vsup is the superficial linear velocity of the mobile
phase. εt,i,j is the apparent total porosity for solute i (Eq. (2)) in
adsorbent j which comprises both the interstitial column porosity
(εc,j) and the part of the void inside the particle pores which is
accessible to the solutes. εp,j is the particle porosity and kD,i,j is
the exclusion factor for solute i, i.e. the fraction of the pore volume
of adsorbent j which can be accessed by this solute. The exclusion
factor for the modulators is assumed to be unity.

εt,i,j = εc,j +
(

1 − εc,j
)
εp,jkD,i,j (2)

Eq. (3) can be used to estimate the apparent axial dispersion
coefficient from the Péclet number (Ped) based on the particle diam-
eter dp [20].

Ped,j = vsupdp,j
Dapp,jεc,j

(3)

A Danckwert boundary condition (Eq. (4a)) was  applied for the
column inlet while the column outlet was described by a homoge-
neous Neumann condition (Eq. (4b)).
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(4a)

∂ci
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(
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)
= 0 (4b)

z0 and zf are the axial coordinates at the inlet and outlet, respec-
tively, of the column. I1, I2, and I3 refer to the three insulin variants;
while S and M represent the salt and the organic modulator, respec-
tively. t0 is the time at which the injection of the feed starts, and
�tload is the load time.

To account for the changes in flow and density caused by mixing
two buffers with different ethanol and KCl concentrations, a mass-
based mixing chamber model was  used, together with a density
correlation from Galleguillos et al. [21], also applied in our previous
studies [17,18].

2.2. Adsorption model

The dynamic adsorption of the insulin variants can be described
by Eq. (5a), where kkin,i,j is the kinetic constant for the adsorption
reaction, �j is the ligand density for adsorbent j, and �i,j is the
shielding factor for adsorbate i on adsorbent j. KCl is assumed not
to adsorb on the stationary phase, i.e. qS,j = 0 and ∂qS,j/∂t = 0 at all
times. Similar to the salt in the steric mass-action (SMA) model
[22], the ethanol is assumed to occupy all ligands that are neither
occupied nor shielded by adsorbate molecules. Consequently, the
concentration of ethanol in the stationary phase (qM,j) is given by
Eq. (5b).
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