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a  b  s  t  r  a  c  t

Ion-exchange  chromatography  has  been  widely  used  as a standard  process  in purification  and  analysis
of protein,  based  on the  electrostatic  interaction  between  the  protein  and  the  stationary  phase.  Through
the  years,  several  approaches  are  used  to  improve  the thermodynamic  description  of  colloidal  particle-
surface  interaction  systems,  however  there  are still a  lot  of gaps  specifically  when  describing  the  behavior
of protein  adsorption.  Here,  we  present  an improved  methodology  for  predicting  the  adsorption  equilib-
rium  constant  by  solving  the modified  Poisson-Boltzmann  (PB)  equation  in  bispherical  coordinates.  By
including  dispersion  interactions  between  ions  and  protein,  and  between  ions  and  surface,  the  modified
PB  equation  used  can  describe  the  Hofmeister  effects.  We  solve  the  modified  Poisson-Boltzmann  equa-
tion  to calculate  the  protein-surface  potential  of  mean  force,  treated  as  spherical  colloid-plate  system,
as a  function  of  process  variables.  From  the potential  of  mean  force,  the  Henry  constants  of adsorption,
for  different  proteins  and  surfaces,  are  calculated  as  a function  of pH,  salt  concentration,  salt  type,  and
temperature.  The  obtained  Henry  constants  are  compared  with  experimental  data  for  several  isotherms
showing  excellent  agreement.  We  have  also  performed  a sensitivity  analysis  to  verify  the  behavior  of
different  kind  of salts  and  the  Hofmeister  effects.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Protein adsorption is the key phenomenon of countless biolog-
ical processes as well of many protein separation and purification
technologies. It is mainly governed by electrostatic interactions
between the protein surface and the adsorbate. Because of that, it is
crucial to have a good description of the electrostatic system when
modeling this phenomenon. One of the first attempts to model the
behavior of colloidal systems came from the Derjaguin-Landau-
Verwey-Overbeek theory (DLVO) that considers an electrostatic
double layer formed on the surroundings of a charged sur-
face [1] which could be described by a linearized form of the
Poisson-Boltzmann (PB) equation [2]. Based on the Hamaker [3]
contribution, Verwey [2] improved the PB approach by combining
the attractive London-van der Waals potential with electrostatic
interactions. For protein adsorption, Ståhlberg et al. [4] applied
the DLVO theory to study the chromatography of proteins using
an analitical equation combining the effect of coulombic and van
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der Waals interactions. Results come from this contribution [4]
are improved due to the link between the parameter of protein
retention and the forces related to protein-support interaction.

Another approach often used to model protein adsorption is
the Sterical Mass-Action method (SMA) [5–7]. SMA applies a sto-
ichiometric binding theory and couples, in a set of correlation
parameters, all the electrostatic and equilibrium information of the
system. In this case they do not consider important effects like non-
electrostatic (NES) and co-ion effects [5], leading to a poor accuracy
at higher salt concentrations or pH values close to the protein iso-
electric point (pI) [7]. The same happens to all the models based on
the classical DLVO theory because it does not take into account the
non-electrostatic effects between ions and protein. Even though
NES effects can be neglected at low ionic strength (0.01 M), they
cannot be ignored when modeling highly concentrated electrolyte
solutions or multivalent ions. This directly impacts on the need
for improvement of the colloid theory for biological applications
[8]. Most of the time, their impact follows directly the Hofmeister
series. To be able to predict this kind of behavior it is essential to
consider dispersion forces in the model [9].

Another way to improve the theoretical description of protein
adsorption was suggested by Roth and Lenhoff [10] which takes into
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Nomenclature

Symbols
B± P Ion-protein dispersion constant (-)
B±S Ion-support dispersion constant (−)
B+ Cation dispersion constant (−)
B− Anion dispersion constant (−)
c Concentration of the colloid (mol m−3)
canion Concentration of the anions (mol L−1)
ccation Concentration of the cations (mol L−1)
cH+ Concentration of H+ ions (mol L−1)
c0 Bulk concentration of the colloid (mol m−3)
d Half distance between the center of the sphere and

the support (m)
e Elementary charge of the electron (1.602·10−19 C)
F Faraday constant (C mol−1)
f Nondimensional force (−)
I Ionic strength (mol L−1)
h Distance between the protein surface and the sta-

tionary surface (m)
H Hamaker constants (J)
K Dimensional Henry constant (m)
Ka Effective dissociation constant (mol L−1)
Ks Effective association constant (mol L−1)
q Surface excess concentration (mol m−2)
r1 Distance between the ion and the colloid (m)
r2 Distance between the ion and the planar surface (m)
rion Ion radius (m)
rw Protein hydration-layer thickness (m)
Rsphere Protein radius (m)
T Absolute temperature (298.15 K)
U± Ion-protein and ion-adsorbent van der Waals inter-

action (−)
W Potential of the mean force of sphere-plate interac-

tion (J)
WPB Electrostatic contribution to the potential of mean

force (J)
Whs Hard-sphere contribution to the potential of mean

force (J)
WHam Potential Hamaker contribution to the potential of

mean force (J)
x,z Cartesian coordinates

Greek symbols
� Activity coefficient of the salt (−)
ˇ Parameter related with the protein radius and �0(−)
ε0 Vacuum permittivity (8.854·10−12 F m−1)
εR Dielectric constant of the medium (80 for water)
�,� Independent variables of the bispherical coordinate

system
� Density of ionizable surface group (mol m−2)
kB Boltzmann constant (1.3806·10−23 J K−1)
kD Inverse Debye length (m−1)
�NH+

3
Charge density of amino groups (C m−2)

�His+ Charge density of histidine groups (C m−2)
�COO− Charge density of carboxyl groups (C m−2)
�SO3

− Charge density of sulfonated groups (C m−2)

�1 Colloid charge density (C m−2)
�2 Stationary phase charge density (C m−2)
�± Charge density of the amino acid groups (C m−2)
  Dimensionless electrostatic potential

(
eϕ/kBT

)

account the three-dimensional configuration of the protein, using
information of the mesh conformation of lysozyme while inter-

acting with a stationary surface. This approach, though, still used
the linearized form of the Poisson-Boltzmann equation. Consider-
ing Hamaker interactions, the result from Roth and Lenhoff [10]
showed a good agreement with experimental data for lysozyme at
small ionic strength, as expected, but not for a wide range of ionic
strength.

When applying the Poisson-Boltzmann equation to describe
spherical colloids it is important to define the better coordinate
system in which this equation is applied. This helps to improve
the calculation of the interaction between two colloids or colloid-
surface particles in contrast with using a planar geometry together
with the Derjaguin approximation to resemble spherical-planar
geometry [11–13]. The PB equation in Bispherical Coordinates was
chosen by Lima et al. [14] as a better approach that provides a good
computational time, discretization scheme and accuracy. These
bispherical coordinates and numerical procedure were able to cal-
culate the osmotic second virial coefficient as a function of ionic
strength considering the interaction between two charged colloids
(globular proteins). The article also reports the application of the
Hamaker constant and analyses the effect of the kind of salt arising
due to non-electrostatic interactions.

An equilibrium model was reported by Ståhlberg et al. [15]
showing the relationship between the electrostatic contribution to
the retention factor (relative to adsorption equilibrium constant for
a diluted system, i.e. Henry constant) for ion-exchange chromatog-
raphy (IEC) of proteins.

In order to predict the influence of protein adsorption, here we
calculate the Henry constant of a protein modeled as a charged col-
loidal particle to be adsorbed on an ion-exchange adsorbent using
the modified PB equation in bispherical coordinates. We  consider
the dispersion interactions between ions and protein and between
ions and adsorbent surface, and the Hamaker potential between
protein and adsorbent surface. With this approach, we can pre-
dict the Henry constant as a function of pH, ionic strength, ionic
specificity, and temperature.

2. Electrostatic model for different coordinate systems

To describe the adsorptive behavior of proteins in chromato-
graphic columns, including the electrostatic interactions between
charged surfaces, it is necessary to establish a model capable to
describe the retention of protein such as reported in [11–13]. The
model is developed by combining the Poisson-Boltzmann equation
and the Langmuir adsorption model, considering that the surfaces,
both protein and support, contain homogeneous distributed charge
density that are dependent on pH and ionic strength.

Using the equilibrium condition for the chemical potential of
protein at the dilute system, we obtain [16]:

c = c0 exp
[
−W (I, pH, h)

kBT

]
(1)

where c is the concentration of colloid (protein) at h, c0 is the bulk
concentration of colloid, h is the distance between the protein sur-
face and the surface of the stationary phase, I is the ionic strength
of the solution, W is the free energy of interaction between the col-
loid and the adsorbate, kB is the Boltzmann constant, and T is the
absolute temperature (here 298.15 K).

Knowing the concentration of protein at different distance h, the
surface excess concentration can be obtained by:

q (pH, I) =
∞∫
0

(c − c0)dh (2)

where q is the surface excess concentration of the protein for given
desired pH and ionic strength, I.
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